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ABSTRACT

Across the world, any cancer becomes a calamity for a person who is suffering from it, mainly women are facing a 
real challenge when it comes to breast cancer. Breast cancer can be diagnosed at an early stage to overcome the con-
sequences at a later stage. In the fi eld of Computer Science, Machine Learning (ML) techniques are competent enough 
to diagnose the stages of cancer. ML techniques work upon the data which are collected from hospitals of suspected 
patients. There are various ML techniques which can build a model in order to diagnose cancer on the basis of fi nding 
accuracy level. In this paper, we have discussed the signifi cance of accuracy level for predicting the cancer. In previous 
works, it has been observed that 100% accuracy is found on data analysis by some researchers. Although 100% accuracy 
must have given perfect prediction but it is observed that prediction was not so, sometimes it gives incorrect prediction 
also. So, prediction technique is scaled up with inclusion of more parameters precision, recall, F1- measure, Receiver 
Operating Characteristics (ROC) area and Area Under Curve (AUC) score.
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INTRODUCTION

Human body is made up of billions of cells and when 
cells start growing, becomes lumps and later on devel-
ops into tumor. Tumor is of two types: Malignant and 
Benign. Malignant is dangerous that causes another 

tumor and consequently cancer. Benign tumor usu-
ally does not cause cancer in short span of time. In this 
paper, there is a discussion of breast cancer which is due 
to internal or external disbalance of hormonal activities. 

 There are some traditional methods to diagnose and 
prognose the cancer but sometimes these methods take 
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long time to diagnose. A Machine Learning is a fi eld 
of Artifi cial Intelligence (AI) in computer science which 
can implement many computational intelligent tech-
niques for the fast and accurate prediction of cancer. 
ML techniques can precisely predict different type of 
tumors. It motivated us to work on cancer prediction 
technique and working to fi nd alternative parameters 
for better prediction.

This paper comprises of four sections. In section 1, 
Introduction of cancer has been described. Section 2 
summarizes the previous related work. In section 3, 
study on various machine learning techniques have been 
presented. Section 4 presents the various vital param-
eters including accuracy for breast cancer prediction. In 
section 5, breast cancer prediction performance metrics 
is discussed. In section 6, experiments and results are 
shown and in the last section, conclusion and discussion 
are explained.

Ahmad et al. (2013) compared 3 ML techniques viz. 
Decision Tree (C4.5), ANN and SVM on Iranian Centre 
for Breast Cancer datasets of 1189 patient and found the 
accuracy as 93.6%, 94.7% and 95.7%. Ali et al. (2019) 
proposed a prediction model using “big data” to explore 
feature selection and cross-validation in omics fi le data-
sets. Further described anti-drug drug response model-
ling and predicting their phenotypic responses. Asri et 
al. (2016) compared different ML algorithms: SVM, C4.5, 
NB and kNN for WBCD dataset which has 699 instances 
and 11 integer-valued attributes. Among all algorithms, 
SVM gave the highest accuracy 97.13% with lowest 
error rate conducted in WEKA data mining tool. 

Bevilacqua et al. (2006) used IDEST novel approach 
based on ANN for WBCD datasets and found 98.6% accu-
racy. Boughorbel et al. (2017) focused on another met-
ric known as Matthews Correlation Coeffi cient (MCC) to 
handle imbalance data using SVM and Bayes classifi er. 
Burt et al. (2018) diagnosed a breast cancer with deep 
learning network using a system Computer-aided detec-
tion and diagnosis (CAD). It mainly looks for images 
captured by MRI, X-rays and compared with human 
expertise like radiologists, clinicians etc. Bychkov et al. 
(2018) took a sample of 420 images of colorectal cancer 
and apply deep learning outperformed AUC 0.69 which 
is better than AUC 0.58 and AUC 0.57 preformed by 
human expert and whole -slide level respectively. 

Chaurasia et al. (2014) explained data mining tech-
niques to predict cancer when they applied RepTree 
(C4.5), RBF Network and Simple Logistics on 286 sam-
ples and found accuracy as 71.32%, 73.77% and 74.47% 
respectively. Coudray et al. (2018) used a model deep 
convolutional neural network (inception v3) on whole-
slide images obtained from The Cancer Genome Atlas 
(TCGA) and obtained an improved AUC score from 0.733 
to 0.856 in the detection of cancer subtype. 

Elgedawy et al. (2017) applied 3 machine learning 
techniques: Naïve Bayes, SVM and RF. Out of them RF 
is the most appropriate and useful algorithm to give the 
best accuracy as 99.42% where SVM and NB produced 
98.8% and 98.24% accuracy respectively. Huang MW 
et al. (2017) used SVM ensemble classifi er along with 
boosting method and RBF kernel based SVM to predict 
the accuracy in cancer dataset. In case of small-scale 
dataset, GA+RBF SVM ensembled with boosting method 
and produced 98.28% accuracy whereas in large dataset, 
RBF SVM ensembled with boosting method produced 
99.52% accuracy.

Nguyen et al. (2013) shown experiments on two data-
sets WBCD (diagnosis) & WBCP (prognosis) from Wis-
consin Breast Cancer Dataset and claimed for 99.8% and 
99.7% accuracy.Pirooznia et al. (2007) compared many ML 
techniques and found 100% accuracy when they applied 
SVM-RFE on 84 sample which is a less size of data. 

Sahu et al. (2012) proposed a novel approach using 
PSO along with SVM and k-NN ML techniques applied on 
the size of 87 sample and found 100% accuracy. Sivakami 
et al. (2015) proposed a hybrid technique DT-SVM to fore-
cast cancer prediction for the dataset of 699 instances of 
WBCD repository and obtained accuracy as 91%. 

Steiner et al. (2018) shown a impact of deep learning 
assistance on lymph of breast cancer and found micro 
metastases in the images with a range from 0.02, 0.002, 
0.018 and 0.0005. Lower the value of micro metastases 
like 0.0005, higher the accuracy in lymph node of breast 
cancer. Xiao et al. (2018) discussed a multi-model ensem-
ble method based on deep learning to fi nd the accuracy 
and effective of different classifi er. The data were sup-
plied in the form of gene expression. This method was 
tested on three public RNA-seq data sets.

MACHINE LEARNING TECHNIQUES

Machine Learning (ML) is a part of AI. ML is used to 
infer the knowledge from the behavior of data. There are 
many areas where ML can be applied. In this paper we 
are discussing the cancer related issues. So, ML uses the 
techniques to generalize the biological sample of a given 
datasets. Following popularly used ML techniques have 
been introduced briefl y.

Decision Tree

A Decision Tree (AL-SALIHY et al. 2017, Yue et al. 2018, 
Ponnuraja et al. 2017) is a binary classifi er used to take 
the decision on attributes of the dataset. It looks like the 
tree but it is an inverted tree. 

Random Forest

A Random Forest (Okun et al. 2007, Nahid et al. 2017, 
Ghongade et al. 2018) is another classifi er, based on 
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Table 1. ML Techniques’ Accuracy level for 
prediction of Breast Cancer

Type of Cancer: Breast Cancer

S. No. ML Technique Sample Accuracy
1 Random Forest 699 99.82%

2 DT-SVM 699 91%

3 Random Forest

699

99.24%

SVM 98.8%

Naïve Bayes 98.24%

4 Decision Tree (C4.5)

1189

93.6%

ANN 94.7%

SVM 95.7%

5 RepTree (C4.5)

286

71.32%

Radial Basis Function 
Network

73.77%

Simple Logistic 74.47%

Table 2. Level of accuracy of ML Techniques for small 
data size

S. No. ML 
Technique

Types of 
Cancer 

Sample Accuracy

1 SVM-RFE Breast Cancer 84 100%

2 PSO-KNN Breast Cancer 97 100%

PSO-SVM

Table 3. Performance parameter metrics for dataset *BCWD11

 Algorithm Confusion Matrix Components Performance Parameters (*BCWD11)
True 
Positive 
(TP)

True 
Negative 
(TN)

False 
Positive 
(FP)

False 
Negative 
(FN)

Accuracy Precision Recall F-Measure MCC ROC 
Area

Naïve Bayes 436 235 22 6 95.99% 96.2% 96% 96% 0.914 98.6%

SVM (SMO) 445 231 13 10 96.7% 96.7% 96.7% 96.7% 0.927 96.5%

KNN (IBK) 443 222 15 19 95.13% 95.1% 95.1% 95.1% 0.892 94.5%

Decision Tree 
(J48)

438 223 20 18 94.56% 94.6% 94.6% 94.6% 0.880 95.5%

Random Forest 444 230 14 11 96.42% 96.4% 96.4% 96.4% 0.921 99%

decision tree, which is a next step when multiple deci-
sion tree resides together. 

Support Vector Machine 

Support Vector Machine (SVM) is a very effective classi-
fi er that classify the feature’s outcome in two categories 
with a hyperplane having distance between the samples. 
(Huang MW et al. 2017, Sweilam et al. 2010, Sewak 
et al. 2007)

k-Nearest Neighbor (kNN)

kNN (Pawlovsky 2017, Rodriguez et al. 2018, Meneses 
et al. 2019, Al-Hadidi et al. 2016) is an essential classi-
fi er which makes a group of similar patterns with dataset 
sample. In general, the value of k is randomly put from 1 
to 5 or extends up to 11 depends on how many neighbors 
are needed for grouping. There are various distance meas-
urement mathematical equations such as Euclidean, Man-
hattan, Minkowski, Chebyshev, Cosine Similarity, Cosine 
Distance to fi nd the distance between the neighbor.

Naïve Bayes Classifi er

This classifi er is based on Bayes’ theorem (Maysanjaya 
et al. 2018, Rashmi et al. 2015, Soria et al. 2008) which 
takes into consideration of independent feature of the 
data. Dependent feature creates more correlation effect 
in prediction.

SIGNIFICANCE OF LEVEL OF ACCURACY FOR 

BREAST CANCER PREDICTION 

There are many ML techniques for cancer diagnosis and 
prognosis. Many researchers have calculated the level of 
accuracy in percentage using different ML techniques 
such as Random Forest, SVM, Naïve Bayes, Decision 
Tree (Nguyen et al. 2013, Ahmad et al. 2013, Chaura-
sia et al. 2014, Sivakami et al. 2015, Elgedawy et al. 
2017) for cancer prediction as shown below in table 1 
for breast cancer datasets.

On the basis of above results, it is not easy to say that 
a particular Machine Learning technique is fi t suitably 
for the diagnosis of breast cancer for a particular dataset 
on the basis of level of accuracy only because 100% 
accuracy comes in underfi t condition where drawn con-
clusion of cancer prediction can’t be correct. 

Following table 2 (Pirooznia et al. 2007, Rajeshwari 
et al. 2011, Sahu et al. 2012, Gunavathi et al. 2014) 
shows 100% accuracy level using some other ensemble 
Machine Learning techniques on selected datasets where 
100% accuracy is not predicting cancer correctly.
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BREAST CANCER PREDICTION METRICS

The basis of performance parameter metrics is confu-
sion matrix and then metrics such as accuracy, preci-
sion, recall, f-measure, Mathew’s Correlation Coeffi cient 
(MCC), is calculated (Kourou et al. 2015, Baker 2003, 
Yang et al. 2017, Tilaki 2013). 

CONFUSION MATRIX

A Confusion matrix is a summary of prediction results 
on a classifi cation problem. In it, the number of correct 
and incorrect predictions are summarized with count 
values and broken down by each class, the concept is 
shown in table 5.

On the basis of above table, various metrics param-
eter has been defi ned below.Accuracy (Barlow et al. 
2004, Tharwat 2018) is the number of correct predictions 
divided by total number of predictions made. Mathemat-
ically accuracy (Acc) is given by the following formula

Sometimes because of accuracy paradox, accuracy is 
not suffi cient to fi nd the best model. Improving the accu-
racy by reducing the error is not appropriate. Therefore, 
ROC Curve and AUC score are better option to use for 
prediction instead of using the only parameter accuracy.

In this paper other additional parameter such as ROC 
and AUC metrics have been calculated to fi nd the actual 
best suitable fi t model.

ROC AND AREA UNDER CURVE (AUC)

ROC (Baker 2003, Yang et al. 2017, Tilaki 2013) curve 
demonstrates the tradeoff between the true positive frac-
tion and false positive fraction to evaluate the positivity. 
AUC (Yang et al. 2017, Tilaki 2013) is a measure of the 
model’s performance which is based on the ROC curve. 
This curve plots two parameters: True Positive Rate & 
False Positive Rate. Both the parameters are defi ned 
below.

True Positive Rate (TPR), termed as sensitivity also, is 
the fraction of positives correctly classifi ed divided by 
total positives and is defi ned as below

Table 4. Performance parameter metrics for dataset **WBCD32

Algorithm Confusion Matrix Components Performance Parameters (**WBCD32)

True 
Positive 
(TP)

True 
Negative 
(TN)

False 
Positive 
(FP)

False 
Negative 
(FN)

Accuracy Precision Recall F-Measure MCC ROC 
Area

Naïve Bayes 190 337 22 20 92.61% 92.6% 92.6% 92.6% 0.842 97.6%

SVM (SMO) 201 356 11 1 97.89% 97.9% 97.9% 97.9% 0.955 97.3%

KNN (IBK) 200 347 12 10 96.13% 96.1% 96.1% 96.1% 0.917 95.6%

Decision Tree 
(J48)

194 335 18 22 92.97% 93% 93% 93% 0.85 92.3%

Random Forest 196 350 16 7 95.95% 96% 96% 95.9% 0.913 99.1%

Table 5. Confusion Matrix

Actual

Valid Not Valid

Pr
ed

ic
te

d

Accept (Recurrence) True Positive 
(TP)

False Positive 
(FP)

Reject 
(No Recurrence)

False Negative 
(FN)

True Negative 
(TN)

Sometimes accuracy yields the same value with 
respect to multiple classifi ers and this makes more com-
plication with Error Rate (ERR) or misclassifi cation rate 
(Jensen et al. 2010, Barlow et al. 2004, Tharwat 2018). 
Error Rate can be calculated as below False Positive Rate (FPR) is the fraction of negative 

incorrectly classifi ed divided by total negatives and is 
defi ned as below

AUC is an effective and combined measure of TPR and 
FPR that describes the inherent validity of diagnostic 
tests (Kouruo et al. 2015). In below fi gure 1, FPR and 
TPR are represented by x-axis and y-axis respectively. 
The ROC indicates the curve of value ranging from 0 to 
1 whereas AUC shows the area under curve. Dashed-line 
partitions True values and False value. True values lie 
above the dashed line and False values lie below the line.
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RESULTS AND DISCUSSION

The experimental setup is designed under the environ-
ment of Windows 10 operating System, Python 3.x ver-
sion and smart IDE Spyder which is a unit of Anaconda 
distribution. The dataset has been used from Wiscon-
sin Breast Cancer Dataset having 10 major features in 
*BCWD11 and 30 major features in **WBCD32 (Kumar 
et al. 2019). The respective performance measurement 
metrics is calculated on the basis of confusion matrix 
given in table 3 & table 4 respectively. 

On the basis of TPR and FPR, the ROC curve is plotted 
for all machine learning classifi ers to obtain AUC score. 
The following graph is showing the AUC score in fi gure 
3 below.

On the basis of fact that higher the value of AUC near 
to 1, the model is considered to be the best. In fi gure 
2, it is observed that the best model for said dataset is 
Random Forest classifi er, has the highest value of AUC 
i.e. 0.97.In similar fashion, another experiment has been 
performed for **WBCD32 and performance of Random 
Forest classifi er is again observed as the best model for 
AUC score 0.98 shown in fi gure 3 below. 

This paper discussed the confusion matrix and per-
formance parameters useful for prediction. Parameters 
are accuracy, precision, F-measure, MCC and ROC area. 

Based on all the parameters, the outcome of this paper 
was to fi nd out the AUC score whereas in previous 
works, only accuracy was calculated. 

 We focused to locate the best fi t model for selected 
breast cancer dataset. In general, it is observed that only 
accuracy is used for cancer prediction. But accuracy 
does not give perfect prediction. It is identifi ed that AUC 
score is signifi cant to consider for correct prediction of 
breast cancer instead of the only parameter ‘accuracy’. 
Random Forest classifi er found fi t perfectly for the used 
dataset among all other four classifi ers viz Naïve Bayes, 
SVM, kNN and Decision Tree. There are also few more 
considerable measurement metrics such as Youden’s 
index (YI), Discriminant power (DP), Balanced classifi -
cation rate (BCR), Optimization precision (OP), Jaccard 
(or Tanimoto similarity coeffi cient), and many more. In 
future, we intend to do feature engineering for better 
prediction of breast cancer.
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