
ABSTRACT
Amongst the cytoskeletal proteins of bacteria, MreB is known to have very crucial role in modulating shape of the bacteria. Present 
study involves the use of biocide (A-22) which minimizes the bacterial size augmenting with minimal antibiotic consumption. Intended 
experiment is designed to be carried out on selected pure strains of gram-positive and gram-negative bacteria namely Lactobacillus 
rhamnosous ATCC 7469 and Pseudomonas aeruginosa ATCC 27853 respectively. The pure strains are exposed to biocide and changes 
in the shape is recorded by means of Foldscope (Origami based paper microscope, Prakash Labs) and in-vivo assessment done 
using antibiotic sensitivity assays with different antibiotics. The novel biocide specifically targeting bacterial cytoskeletal protein, 
that determines rod shape among bacterial population. The said compound is also experimented as combinational drug along with 
conventional antibiotics to reduce antibiotic dose needed to kill and to overcome antibiotic resistance. The A-22 has reduced nearly 
60-70% antibiotic usage. In Pseudomonas aeruginosa ATCC 27853 when tested for MIC using A-22 and different antibiotics, it was 
found that 0.5 µg/ml of ampicillin, 1 µg/ml of streptomycin and 5 µg/ml erythromycin were effective in curtailing bacteria against 
conventional antibiotic concentrations ampicillin 128 µg/ml  streptomycin 32 µg/ml, erythromycin 64 µg/ml. Compared to doses of 
antibiotics required to kill bacteria, the combinational drug of biocide and antibiotic have shown promising effects in killing bacteria 
at very less concentration, this can useful for treating most diseases caused by antimicrobial resistance bacterial populations.
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INTRODUCTION

Eukaryotes and prokaryotes contain cytoskeletal protein 
structures that are essential to stabilize cell membrane and 
also provide rigidity to the cell (Soufo and Graumann 2007; 
Vats et al. 2009). In prokaryotes it helps in maintaining cell 
morphology, cell growth, cell division and chromosome 
segregation. The cytoskeletal proteins of eukaryotes namely 
actin, tubulin, and intermediate filaments are homologous to 
cytoskeletal proteins of bacteria MreB, FtsZ, and crescentin 
respectively (Daisuke et al. 2008). Among these, MreB 
protein determines rod-shape in bacteria: MreB which is 
an actin homolog is recognized as significant protein in 
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maintaining rod shape in the bacteria such as Pseudomonas 
aeruginosa, Escherichia coli, Caulobacter and Bacillus 
subtilis (Busiek et al. 2015; Awunii 2020).

It was first identified in Escherichia coli as a protein 
necessary in maintaining cell shape (Doi et al. 1988). MreB 
belongs to the superfamily of HSP70–actin–sugar kinase 
and it was known in forming spirals which can traverse 
the longitudinal axis of cells of B. subtilis, this suggests 
that bacteria are having an internal actin-like cytoskeleton 
to maintain cell shape which is analogous to eukaryotes 
(Jones et al. 2001; Awuni and Mu 2019). It is considered to 
be conserved actin homolog in prokaryotes and is mainly 
encoded in the chromosomes of the bacterial species and 
also helps in variety of cellular activities. A22 - biocide 
changing rods into cocci: S-(3,4-dichlorobenzyl) isothiourea 
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(A22) biocide is a derivative of S-benzylisothiourea which 
is chemically designated as [(3,4-dichlorophenyl)methyl]
thiocarboxamidine (Figure 1) (Iwai et al. 2002; Carballido-
Lopez et al. 2006; Awunii 2020).

and agar was used for inoculating and plating respectively, 
whereas for E. coli Luria bertani broth and agar (LBA) was 
used for inoculation and plating respectively. L. rhamnosus 
was inoculated and plated on MRS media. Initially the 
cultures were exposed to different concentration of biocide 
(A22) given in the Table 1 and incubated at 37°C for 24 
hrs.

After 24 hrs, the optical density of the culture was measured 
at 660nm using UV-VIS Double Beam Spectrophotometer 
2205 (Systronics) and the size of the bacteria was measured 
using micrometry shown in the Table 2 (Awuni and Mu 
2019). Then the lawn culture was prepared using sterile 
swab and different concentration of antibiotics was added 
and plates were incubated at 37°C for 24 hrs and the zone 
of inhibition was measured which is given in the Table 3. 
The bacteria were inoculated with combination of biocide 
and antibiotics and after 24 hrs of exposure the optical 
density of the culture was measured using UV-VIS Double 
Beam Spectrophotometer 2205 (Systronics), and the graph 
obtained is given in the Figures below (Al-Khayyat et 
al. 2019). Molecular docking simulation is performed to 
understand the interaction of ligands with the target proteins 
at the molecular level. In this study, the crystallographic 
structure of MerB protein was retrieved from the RCSB 
PDB database (PDB ID: 1JCE).

On the other hand, chemical structure of the compound A-22 
was drawn and 3D optimized using ChemSketch. Protein and 
ligand preparation, as well as binding site prediction steps 
were completed according to the previous studies conducted 
by Patil et al. (2021d) and Patil et al. (2021e). AutoDock 
Vina 1.2, an open-source command line software designed 
for the docking of the molecular entities was used for the 
docking simulation (Trot and Olson 2010). The visualization 
of docking simulation was done using BIOVIA Discovery 
Studios Visualizer (2021), an open source visualizing GUI 
software. Druglikeliness and pharmacokinetic analysis, also 
known as ADMET (adsorption, distribution, metabolism, 
excretion, and toxicity) predictions, were performed to 
assess its oral bioavailability of potential drug candidates 
in silico. In this study, chemical structure of the compound 
A-22 in SMILES format was submitted to the ADMETlab 
server (https://admetmesh.scbdd.com/).

For the druglikeliness evaluation, Lipinski’s rule of five 
was considered. For pharmacokinetic evaluation, CACO-2 
permeability, human intestinal absorption (HIA), volume 
distribution (VD), cytochrome P (CYP) inhibition, 
hERG blocking, and AMES toxicity parameters were 
considered (Patil et al. 2021f). As the druglikeliness and 
pharmacokinetic studies were performed in silico, there 
were no ethical clearance, patient consent, or any kind of 
approvals required.

Results and Discussion

The different bacterial cultures viz., P. aeruginosa, E. coli 
and L. rhamnosus were exposed with 1, 3 and 0.5 µg/ml 
concentration of the biocide. The optical density of the 
culture after exposure with biocide and control (without 
biocide) was recorded and also the size of the bacteria 

Figure 1: Structure of A-22

The A22 is known to be acting like a reversible inhibitor of 
a bacterial cell wall protein MreB which leads to change in 
shape of bacteria from rods to the coccoid form and also it 
prevents assembly of MreB into long rigid polymers. As a 
result of change in shape various properties of the bacteria 
can be affected, such as the cell division, the acquisition of 
nutrients, motility, the clamping surfaces, and pathogenesis 
(Bonez et al. 2016). To check the activity of A22 in changing 
rods to cocci the pure strains were used in this study 
which includes Pseudomonas aeruginosa ATCC 27853, 
Escherichia coli ATCC 25922, Lactobacillus rhamnosus 
ATCC 7469 and Lactobacillus casei ATCC 393 (Valik et 
al. 2008; Percival and Williams 2014; Moradali et al. 2016; 
Awuni 2020).

P. aeruginosa and E. coli were used in the study as they 
are pathogenic microorganisms and they show resistance 
to most of the antibiotics. As a case combination of biocide 
and antibiotics are used to inhibit the bacterial growth. In 
the current scenario, several phytochemical formulations 
have been used to treat microbial diseases (Patil et al. 2021a; 
Patil et al. 2021b; Patil et al. 2021c). Small molecules 
like bioactive peptides have also been used, indicating 
the significance of small chemical compounds (Patil et al. 
2020). In the present study MreB polymerization is targeted 
using A22, MreB is very essential for cell wall biosynthesis 
and is also conserved in all rod shaped bacteria. This study 
mainly involves the use of combination of biocide and 
antibiotics against strains such as P. aeruginosa and E. 
coli because of their resistance to almost all the antibiotics. 
Their size reduction is established with minimum amount 
of conventional antibiotic to kill them. By this treatment 
of many severe diseases caused by these bacteria can be 
made possible.

Material and Methods

The pure strains of the bacteria from ATCC were taken 
and streaked on the agar plates. Pseudomonas aeruginosa 
and Escherichia coli was grown on Nutrient agar (NA) 
and incubated at 37°C for 24 hrs whereas, Lactobacillus 
rhamnosus was grown on De Man, Rogosa and Sharpe 
(MRS) agar and incubated at 37°C for 24 hrs (Bonez et al. 
2016). Different broth was used for inoculating different 
bacteria. For P. aeruginosa Mueller Hinton borth (MHB) 
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measured is given in the Table 1. After the cultures were 
exposed to biocide, they were subjected to antibiotic assay 
against different antibiotics and the zone of inhibition 

formed is given in the Table 2. The optical density of the 
culture was recorded and the graph obtained is shown below 
(Figure 2, 3, and 4). The MIC of the experimental molecules 
has been shown in Figure 5.

Bacteria	 Biocide	   Optical density	 Size
	 concentration	 (660nm)	 (µm)

Pseudomonas aeruginosa	  Control	 0.612	 7.5
	 1 µg/ml	 0.410	 5.0
Escherichia coli	  Control	 1.453	 2.5
	 3 µg/ml	 0.751	 1.875
Lactobacillus rhamnosus	 Control	 1.684	 8.0
	 0.5 µg/ml	 1.571	 7.5

Table 1. Optical density and the size of the bacteria after exposure 
to A-22 biocide

Table 2. Zone of inhibition formed using different concentration of different 
antibiotics
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Figure 2: Graphs showing growth percentage of Pseudomonas 
aeruginosa against different experimental compounds 
A) ampicillin, B) streptomycin, C) erythromycin, D) 
chloramphenicol, and E) ciprofloxacin

Figure 3: Graphs showing growth percentage of Lactobacillus 
rhamnosus against different experimental compounds A) 
erythromycin, B) streptomycin, and C) chloramphenicol

Figure 4: Graphs showing growth percentage of Escherichia 
coli against different experimental compounds A) ampicillin, 
B) streptomycin, C) erythromycin, D) ciprofloxacin

Figure 5: Image of Pseudomonas aeruginosa culture showing 
zone of inhibition for different concentration of A and B) 
ampicillin, C) streptomycin, D) Image of Lactobacillus 
rhamnosus culture showing zone of inhibition (diffuse 
growth present) for different concentration of streptomycin 
without exposing to biocide, E) after biocide exposure

During the molecular docking process compound A-22 
formed 3 hydrogens with GLY 68, PRO 103, and THR 
158 residues of the protein. It also formed 2 hydrophobic 
alkyl bonds with LEU 312 and VAL 315. In addition, an 
electrostatic pi-anion bond with ASP 9 of the protein. The 
compound was predicted with a binding affinity of -8.7 

kcal/mol. The binding interaction of A-22 with MerB has 
been visualized in Figure 6. The bound amino acids have 
been colorized according to their binding type. Whereas, the 
surrounding amino acids have been colored in teal.

During the evaluation of druglikeliness according to the 
Lipinski rule, the molecular weight (MW) of A-22 was 
found to be 227.07 g/mol, which has not exceeded the limit 
of 500 g/mol. clogP value represents the partition coefficient 
between n-octanol and water to measure the hydrophilicity. 
Low hydrophilicities and therefore high clogP values cause 
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poor absorption or permeation. In this study, the clogP was 
found to be 1.65. Hydrogen bond acceptors were predicted 
to be 2, whereas the limit has been set for 10. In case of 
hydrogen bond donors, A-22 was predicted to have 2, 
with the limit set for 5. Therefore, compound A-22 never 
violated the rule of Lipinski rule. In case of pharmacokinetic 
analysis, Caco-2 cell line permeability was predicted to be 
-4.97 for A-22. 

Figure 6: Visualization of binding interaction of the 
compound A-22 with MerB protein in A) 3D and B) 2D

The limit of Caco-2 value is -5.15 log units. Human 
intestinal absorption value was predicted to be positive 
(0.008). Volume distribution was predicted to be 4.628, 
which should be in the range of 0.04-20L/kg. In case of 
cytochrome P inhibition, A-22 was predicted with no 
inhibition of cytochrome P enzymes. The human Ether-à-
go--Related Gene (hERG) is blocking was predicted with 
positive value (0.032). Furthermore, AMES toxicity value 
was predicted to be positive (0.236), which indicated absence 
of risk of toxicity. Table 3 represents the druglikeliness and 
pharmacokinetic analysis of the compound A-22. Figure 7 
visualizes the druglikeliness and pharmacokinetic analysis 
of A-22.

Figure 7: Visualization of druglikeliness and pharmacokinetic 
analysis of the A-22. Presence of blue line represents the 
compound A-22 within the boundaries of all the parameters 
used.

The alarming increase in antibiotic resistance is due poor 
public health, inexpensive antibiotics which is causing 
threats in neonatal sepsis, causing therapeutic failures 
in bacterial infections (Laxminarayan et al. 2015). It is 
alarming that although bacterial resistance continues to 
emerge, the rate at which antibiotics are being developed is 
decreasing (Pulcini et al. 2012). MreB is a promising drug 
target because it is conserved and essential in most rod-
shaped bacteria, MreB has been associated with essential 
subcellular processes including cell wall biosynthesis and 
maintenance of cell shape (Doi et al. 1988; Bean and Amann 
2008; Awuni 2020). Determinations of the DNA-sequence of 
the MreB-gene and of the gene-products of the Mre-region 
that function in formation of the rod shape of Escherichia 
coli cells, cell division, cell wall morphogenesis MreB have 
been identified as potential targets for antibiotics. 

The nucleotide binding site is an important target for 
antibiotics development because nucleotide binding plays 
a crucial role in the structure and dynamics of MreB 
(Wachi and Matsuhashi 1989; Jones et al. 2001; Soufo 
and Graumann 2005; Bean and Amann 2008;  Awuni and 
Mu 2019). ATP induces the polymerization of MreB into 
filaments required for cell wall biosynthesis (. Interestingly, 
the polymerization of MreB induces ATP hydrolysis, which 
serves as a timing process to coordinate depolymerization 
(Bean and Amann 2008; Gunning et al. 2015). Thus, 
ATP is required by MreB to function properly and any 
molecule that could compete with ATP for binding to the 
nucleotide binding pocket could be a bactericidal agent 
(Awuni 2020).

The results obtained from this study are the first to evaluate 
the effectiveness of biocide A22 by inhibiting cytoskeletal 
protein Mreb on the strains Pseudomonas aeruginosa ATCC 
27853 and Lactobacillus rhamnosus ATCC 7469 and to 
reduce consumption of antibiotics due to decreased size. 
The MIC value of A22 on Pseudomonas aeruginosa was 
found be lower in this study, compared to the MIC reported 
in previous studies (Bonez et al. 2016). The drastic reduction 
in the antibiotic consumption, below MIC after the exposure 
of the strains to biocide was observed in this study. The 
result reported in the study provides an alternative method 
to inhibit multi-drug resistant (MDR) microorganisms. The 
results obtained helps indicates that the biocide A22 used in 
the study brought about change in bacterial conformation 
by targeting its cytoskeletal protein MreB, and also reduced 
antibiotic consumption of bacteria (Awuni 2020).

Apart from the in vitro evaluations, in silico studies 
conducted on MreB inhibition also indicates that compound 
A-22 has the higher inhibitory potential. A recent study 
showed that MreB protein can be inhibited by few of the 
100 natural compounds tested. Apart from amentoflavone 
and rutin, the other compounds failed to achieve significant 
inhibition. The compounds were also reported with 
insignificant druglikeliness and pharmacokinetics results 
(Al-Khayyat et al. 2019). In another study, phytochemicals 
from Leucas aspera were screened for the inhibition of 
MerB in silico. Among them, leucasperone B and penicillin 
were found to be the potent inhibitors of the protein. 
However, compound A-22 has been proved with the better 
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outcomes during in silico analysis in comparison with these 
studies, with respect to binding interaction, druglikeliness 
and pharmacokinetics analysis. From these we can say that 
A22 can be used as a novel drug for treating diseases caused 

by MDR Pseudomonas aeruginosa and also usage of high 
dose antibiotics can be stopped which can prevent many 
side effects caused by antibiotics to humans (Sharavanan 
et al. 2019; Awuni 2020).

Categories	 Types of parameters	 A-22

Druglikeliness based on	 Molecular weight	 227.07 g/mol
Lipinski’s rule of five
	N o. of hydrogen bond donors	 2
	N o. of hydrogen bond acceptors	 2
	 cLog P	 1.65
Adsorption	 Caco-2 permeability	 -4.97
	 Human intestinal absorption (HIA)	 0.008
Metabolism	 CYP1A2 inhibition	N o
	 CYP2C19 inhibition	N o
	 CYP2C9 inhibition	N o
	 CYP2D6 inhibition	N o
	 CYP3A4 inhibition	N o
hERG blocking	 Clearance (CL)	 0.032
Toxicity	 AMES toxicity	 0.236
Distribution	V olume distribution (VD)	 0.071

Table 3. Druglikeliness and pharmacokinetic analysis of compound A-22.

Conclusion

The findings of this study are the first to assess the 
efficacy of biocide A22 in suppressing the cytoskeletal 
protein MreB of Pseudomonas aeruginosa ATCC 27853 
and Lactobacillus rhamnosus ATCC 7469, as well as the 
reduction in antibiotic consumption due to reduced size. 
This study discovered a significant decrease in antibiotic 
consumption below the MIC level and there is nearly 60-
70 percent antibiotic usage after the strains were exposed 
to biocide. In addition, our computational investigation 
also suggests that biocide A-22 inactivates MreB. During 
druglikeliness and pharmacokinetics analysis reveals A-22 
shows no toxic effects. Therefore, we conclude biocide 
A-22 as a potent anti-bacterial agent against MDR bacterial 
species.
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