
ABSTRACT
With growing demands in the computing services and increase in computation power, the computer consumers are 
migrating towards cloud computing domain to increase the effectiveness in compute, share, manage and to store the 
resources. The data storage and computations are delegated to the third party to manage it in the cloud that poses 
breach of confidentiality during computation. The cloud providers should ensure security for the data in rest and data in 
motion to prevent data disclosure during computation. Data encryption is a best way to secure the data, but practically 
not feasible to share the secret keys since third party is involved in handling the data. A solution to this problem is 
to perform the computations without decrypting the cipher text. Fully Homomorphic Encryption (FHE) is an efficient 
method to provide random computations on the encrypted data stored in cloud without decrypting it. The computation 
results are also encrypted which can be decrypted from the user domain. Genetic Algorithm (GA) is a heuristic search 
method based on natural selection. This paper proposes a symmetric key homomorphic encryption based on Genetic 
Algorithm key generation. Due to the randomness in key generation a strong cryptosystem is designed that makes the 
Chosen plain text attack more difficult. The results shows that the keys generated by GA are more random than other 
symmetric key cryptosystems.

KEY WORDS: Fully Homomorphic Encryption (FHE), Genetic Algorithm (GA), Symmetric Keys, Cloud 
Computing.

 
Optimized Symmetric Keys Generated using Genetic Algorithm for 
Fully Homomorphic Encryption System 

K.Kalaiselvi, S. Gopika and Mary Jacob
Faculty, Department of Computer Science, Kristu Jayanti 
College (Autonomous), Bangalore, India.

Biosc.Biotech.Res.Comm. Special Issue Vol 14 No 06 (2021)

 
Biosc Biotech Res Comm P-ISSN: 0974-6455  E-ISSN: 2321-4007

Identifiers and Pagination	 Article Information
Year: 2021 Vol: 14 No (6) Special Issue	 Received: 15th April 2021

Pages: 339-343	     Accepted after revision: 04th June 2021

This is an open access article under Creative 	

Commons License Attribn 4.0 Intl (CC-BY).
DOI: http://dx.doi.org/10.21786/bbrc/14.6.70  339

INTRODUCTION

Cloud computing is the new buzz word in the domain 
of computation, though mostly associated with faster 
computing solutions and pay-use model, there is 
always a threat to the data which is stored and handled 
in the cloud. The data which is accessed is no longer 
in the control of the cloud client. Data encryption is 
considered as a vital form of protecting the data against 
breach of confidentiality and security (William et al., 
2011). Conventional cryptographic methods use One 
Time Password or Pseudo Random Number Generators 

to generate the cryptographic keys for encrypting and 
decrypting the data. Encryption schemes are needed to 
be provided to all data in rest, motion and in use. 

Other mechanisms like SSL can be used to provide 
security for data in motion. But the real challenge lies 
in protecting the data in rest and in use (Bensitel et 
al., 2016). Though the computations are delegated to a 
third party in the cloud, the public or private keys for 
the cryptographic operations cannot be shared with the 
cloud providers. So, a practically possible Homomorphic 
schemes are needed that permit the user to perform 
computation on the ciphertext, access the encrypted data 
records, to validate the computations performed by the 
third party. Homomorphism is a mathematical property 
in which preserves the mapping between two algebraic 
structures belonging to the same type. Fully homomorphic 
encryption (FHE) enables the user to accomplish the 
computations on the ciphertext without decrypting the 
data (Gentry et al., 2009).



Kalaiselvi et al.,

340

The result of the computation is in the encrypted 
form which can be decrypted from the client domain 
to generates the same output that is generated by the 
unencrypted original data. The privacy and security of 
the data stored in cloud is preserved by FHE schemes 
since data access and computations can be performed 
in the encrypted data without decrypting them. Genetic 
Algorithm (GA) belongs to the Evolutionary Algorithms, 
that is best suitable for increasing the complexity using 
randomness (Goldberg et al., 1989) The encryption key 
needed for the cryptographic process can be generated 
randomly by applying GA that strengthens the 
encryption process. This paper proposes a novel method 
for protecting the data stored in cloud using AES-FHE 
scheme. The symmetric keys needed for the encryption 
are generated using GA and AES-FHE with modified 
rounds is proposed in this paper. The paper is organized 
as follows: Section 1.1 and 1.2 explains the basic 
concepts of Genetic Algorithm and Fully Homomorphic 
Encryption, Section 2discusses the proposed work, 
Section 3 provides the Experimental result analysis, 
Section 4 presents the conclusion and future work.

1.1 Genetic Algorithm: This paper explores the Genetic 
Algorithm to generate the distinct and highly randomized 
key for cryptographic operations that makes the 
encryption process more strong and secure. GA is well 
proven Evolutionary computation method inspired from 
Darwin’s natural selection through survival of fittest 
process. GA follows the natural Genetics principles, 
mimics the natural reproduction process and produce 
a strong new population. Using this natural property, 
its already proven that GA can generate strong 
cryptographic keys for both symmetric and Asymmetric 
algorithms (Sindhuja et al. 2014) GA initiates its search 
for the candidate solution, known as chromosomes in 
the problem space from initial random population and 
iteratively performs the search to reach the feasible 
solution with three basic operators. 

Selection operator selects the chromosomes to generate 
the next population. Crossover operator broadcasts the 
strong set of chromosomes with high fitness value by 
mating the individual chromosomes. Mutation operator 
increases the diverse combination and prevents the 
search from being stuck in local best solution. The 
strength of the GA depends on the parameters used to 
setup the experimental environments such as Encoding 
methods, types of operators used and control parameters 
(Kalaiselvi et al., 2017) Control parameters includes the 
number of generations run and the population size. The 
generic binary coding, uniform crossover, Roulette Wheel 
Selection and Inverse Mutation are used to develop 
the algorithm which generates the unique key for the 
encryption process for the AES based FHE scheme. 
The pseudo code for a simple genetic algorithm can be 
described as follows.

Begin
Generate the initial population randomly.
Calculate the fitness value.
Repeat

Roulette Wheel Selection: a pair of parents based on 
fitness value.
	
Uniform Crossover: Create two offspring.
Bit FlipMutation: Apply to each child.
Evaluate: Fitness percentage.
New population: All the offspring are new.
Until (Terminate condition = TRUE).
End.

1.2 Fully Homomorphic Algorithm: Homomorphism in 
mathematic property describes the algebraic function that 
maps any two algebraic structures that belongs to the 
same groups or rings or vector spaces. Using this property 
Homomorphic Encryption (HE) enables the cloud 
providers to perform computation on the ciphertext. 
In conventional encryption methods, the users need to 
negotiate with the data security in order to use the cloud 
services. To preserve confidentiality and integrity of the 
data in cloud HE allows the operations on encrypted 
data. Depending on the computational process and the 
repeated times usage it can be Partially Homomorphic 
(PHE), Somewhat Homomorphic Encryption (SWHE) or 
Fully Homomorphic Encryption (FHE) (Van Dijk et al, 
2010 and Yookesh et al 2020).  FHE allows the users to 
perform cryptographic process ‘n’ times. FHE comprises 
of four main processes. 

Figure 1: Proposed Key generation process using GA 

1. Key Generation Process: generating key for symmetric/ 
asymmetric HE methods.



 341

Kalaiselvi et al.,

2. Encryption Process: Generates ciphertext C from the 
plaintext P, C=E(P) with the encryption key K

3. Decryption Process: Decrypts the ciphertext to generate 
the plaintext D(C)=P with the same key.

4. Evaluation Process: Performs the functional operations 
like additive or multiplicative over the ciphertexts C1, 
C2 and evaluate the output by Fn(C1, C2)=E(Fn(P1,P2), 
it means D(Fn(C1,C2)=Fn(P1,P2) without even knowing 
the plaintext P.

Proposed Algorithm
2.1 Symmetric Key Generation Using Genetic Algorithm:  
The first phase of the proposed work is to generate non-
repetitive, highly unpredictable random cryptographic 
key using GA for the symmetric Homomorphic Encryption 
system Random number generator is utilized to populate 
the initial population of GA. The keys are encoded to 
decimal numbers. The crossover and mutation operators 
are applied to the current population to produce the 
chromosomes for the next generation. In each sequence of 
key generated the relationship amongst the chromosomes 
are evaluated using the statistical tests in sequence. The 
evaluation fitness function for the key selection among 
the candidate keys will be the combination of gap, 
frequency and auto correlation tests (Mahender et al, 
2017 and Ranjeeth et al 2020). Depending on number of 
iterations these processes are be repeated N times. The 
sequence of chromosomes with the correlation value 
close to 0 is selected as the cryptographic key for FHE.
The proposed GA based key generation method is shown 
as a flowchart in Figure:1.

Generating Initial Population: The population size is 
taken as 250 and the number of generations is taken 
as 1000. The first parent chromosomes are generated 
using PRNG which is followed by the iterative process of 
applying crossover and mutation operators to generate 
the next generation chromosomes.

Crossover operator: The parents generated in the new 
population are treated with Single point crossover. 
Random crossover point is chosen and performs swapping 
among the chromosomes of parent generations to produce 
set of new children or offspring. These children are 
dissimilar from the previous generations. The statistical 
tests, Gap and Frequency tests are applied to the set of 
new offspring. The population with minimum frequency 
occurrence and maximum gap between occurrences is 
selected as candidate population. 0.2% crossover rate is 
taken for the above-mentioned processes.

Mutation Operator: Mutation is the process of flipping 
or altering one or more gene in the selected set of 
chromosomes. With a mutation rate of 0.3%, Bit Flip 
mutation is applied to the population which inverse 
the bits. A bit ‘1’ is inversed to ‘0’ and viceversa. At the 
end of the mutation process the most fit chromosomes 
replaces the less fits.  

Fitness Evaluation Function: This is the objective function 

to evaluate the fitness of the generated chromosomes. This 
function determines how close the current population 
is to the goal state in the problem space. The individual 
chromosomes with the highest fitness value are selected 
from the initial population to be treated with the other 
GA operators. The individual chromosome generated is 
tested for the number of occurrences by using Frequency 
test. And the consequences of the interval between 
the repeated occurrences is tested using Gap test. The 
chromosomes with minimum occurrences and maximum 
gap are selected as the candidate key and stored in a 
repository. In order to generate a strong, non-repetitive 
and unpredictable keys for the cryptographic operations 
in FHE, the stored key are again evaluated with Auto 
correlation test which examines the relationship between 
any two bits in the keys. The values lie between +1.00 
and -1.00 which is positive correlation and negative 
correlation. This linear property evaluates the randomness 
of the genes in the population. The chromosomes with 
near zero value indicate high randomness and those 
chromosomes are chosen and generated as the key for 
the encryption operation for FHE.

Fhe Scheme With Symmetric Key Encryption: The key 
which is generated using GA is of16, 32, 64 and 128 bits 
length depending on the symmetric encryption scheme 
used for FHE. The plaintext and the symmetric key are 
mapped as matrix in order to achieve the homomorphism. 
The proposed FHE scheme is based over Integers which 
search for the Approximate Greatest Common Divisor 
method (Coron et al., 2011, Wainakh et al. 2018 ) which 
has efficient homomorphic property. The proposed 
Symmetric FHE is as follows:

Step 1: The key generated from GA is taken as input for 
the FHE process.

Step 2: Symmetric key selection: Choose the key X that 
is an odd integer from certain intervals, such that X∈ 
(2N, 2N-1).

Step 3: Encryption Process: Let M be the bit from 
the plaintext P, to encrypt bit M, take M ∈ {0,1}, the 
ciphertext C is set as C= Encrypt(M) = M+ 2R +XY, 
where Y and R are random numbers. R is chosen with 
the condition R < X/2.

Step 4: Decryption Process: The ciphertext is decrypted 
as Decrypt(C) = (C(Mod X))(Mod 2)=M.

Step5: Evaluation Process:  Fully Homomorphism can 
be achieved by applying Addition and Multiplication 
operations over the given integers. Let C is the Ciphertext, 
Ci are the ciphers which are partitioned. 

Step 5.1:  Apply addition,



342

Kalaiselvi et al.,

Step 5.2: The ciphertext C can be decrypted if the 
condition 2R1R2 +M1R2 +M2R1< X/2

Step 6: As long as step 5.2 is true, then the plain text is 
retrieved from C.

The symmetric FHE needs varying key length as input for 
different types of symmetric cryptosystem. For example, 
AES-128 symmetric algorithm needs the key length of 
16 bits to match with the input block size.

3. Experimental Result Analysis: The implementation 
of the proposed algorithm explained in section 2 has 
been done in MATLAB to analyze the result. For the 
experimental purpose the proposed system is tested for 
text files and .wav audio files. The key generation process 
plays a vital role in this proposed work. The strength of 
any cryptosystem lies in the strength of the key used 
for encryption. The result proves that the GA process 
can generate a fittest and strong key for the symmetric 
encryption process. Figure 2 shows the snapshot of the 
process that happens during key generation. Figure 3 
shows the possible keys generated with fitness values. 
Figure 4 shows the fittest secure key that is chosen 
among the possible candidate keys after the application 
of statistical test.

Figure 2: Snapshot of the process that happens during 
16bit keygeneration. 

The experiment has been conducted with the GA control 
parameters with population size 16, 32,64 and 128 
in order to generate the encryption keys which can 
be chosen with respect to the symmetric encryption 
algorithm and the generations as 250, 500, 750 and 1000.
The throughput time or the execution time is given in 
Table 1. The variation in key length and variation in the 
number of iterations has an impact on the execution time 
for the key generation as shown. But due to the complete 
randomness nature of the key the slight increasein 
running time can be tolerable.

Figure 3: Possible keys generated with fitness values 

Figure 5: A sample 32 bits key generated for encryption 

Figure 4: The fittest key chosen for the symmetric FHE 

Table 1. Time taken to generate keys of various size 



Table 2. Cryptographic time analysis for input text files 

Table 3. Cryptographic time analysis for input Audio 
files

The proposed GA can generate keys of size 16,32,64 and 
128 bits. Key generated for 32 bits encryption scheme for 
the 200 iteration is shown in Figure 5. Table 1 gives the 
time taken by the proposed system to generate different 
key length with respect to the population sizes. For the 
experimental simulation purpose, the time taken for the 
cryptographic process and the evaluation time has been 
calculated for the various file sizes of 10KB, 20KB and 
40KB taking text files as the input. Random audio files 
of 39KB and 283 KB were taken as input. The results we 
shown in Table 2 and Table 3 respectively.

The evaluation time is calculated by the FHE with the 
generated symmetric key as the encryption key.

CONCLUSION AND FUTURE WORK

The growing usage of the cloud computing application 
increases the importance of a more robust encryption 
scheme like Fully Homomorphic Encryption. The 
efficiency of any cryptographic system lies in generation 
of strong and robust keys which are very difficult to 
tamper. Hence the emphasis is on generating the fittest 
keys for the encryption process. So, this paper justifies 
that GA generates the non-repetitive, unpredictable 
complex keys for symmetric cryptosystem that enhances 
the security of symmetric FHEs. This work can be 
extended to be applicable for public key cryptosystem 
also. Integer based FHE scheme is used in this paper. 
Other FHE schemes can be implemented for evaluation 
process and an optimized FHE method can be identified 
with respect to cryptographic and evaluation time. 
Though the key generated by GA is an optimized 
key, comparison can be done with other evolutionary 
approaches enhancing the FHE to make the system more 
precise and stronger.

REFERENCES
	 Bensitel, Y. and Romadi, R., 2016, May. Secure data 

storage in the cloud with homomorphic encryption. In 
2016 2nd International Conference on Cloud Computing 
Technologies and Applications (CloudTech) (pp. 1-6). 
IEEE.

	 Coron, J.S., Mandal, A., Naccache, D. and Tibouchi, 
M., 2011, August. Fully homomorphic encryption 
over the integers with shorter public keys. In Annual 
Cryptology Conference (pp. 487-504). Springer, Berlin, 
Heidelberg. 

	 Gentry, C., 2009. A fully homomorphic encryption 
scheme (Vol. 20, No. 9, pp. 1-209). Stanford: Stanford 
university. 

	 Goldberg, D.E., 1989. Genetic algorithms in search, 
optimization, and machine learning. Boston, MA: 
Addison-Wesley. 

	 Kalaiselvi, K. and Kumar, A., 2017. Effect of variations 
in the population size and Generations of Genetic 
Algorithms in Cryptography-An Empirical Study. Indian 
Journal of science and technology, 10(19), pp.1-6. 

	M ahender, K., Ramesh, K.S. and Kumar, T.A., 2017. An 
efficient ofdm system with reduced papr for combating 
multipath fading. Journal of Advanced Research in 
Dynamical and Control Systems, 9(Special issue 14), 
pp.1939-1948. 

	R anjeeth, S. and Latchoumi, T.P., 2020. Predicting 
Kids Malnutrition Using Multilayer Perceptron with 
Stochastic Gradient Descent. Rev. d'Intelligence Artif., 
34(5), pp.631-636.

	 Sindhuja, K. and Devi, S.P., 2014. A symmetric 
key encryption technique using genetic algorithm. 
International journal of computer science and 
information technologies, 5(1), pp.414-416.

	 Van Dijk, M., Gentry, C., Halevi, S. and Vaikuntanathan, 
V., 2010, May. Fully homomorphic encryption over the 
integers. In Annual International Conference on the 
Theory and Applications of Cryptographic Techniques 
(pp. 24-43). Springer, Berlin, Heidelberg. 

	 Wainakh, A., 2018. Homomorphic encryption for data 
security in cloud computing (Doctoral dissertation, 
MIDDLE EAST TECHNICAL UNIVERSITY).

	 William, S., 2011. Cryptography and network security: 
principles and practice.

	Y ookesh, T.L., Boobalan, E.D. and Latchoumi, T.P., 
2020, March. Variational Iteration Method to Deal with 
Time Delay Differential Equations under Uncertainty 
Conditions. In 2020 International Conference on 
Emerging Smart Computing and Informatics (ESCI) (pp. 
252-256). IEEE.

Kalaiselvi et al.,

 343


