
ABSTRACT
Multipliers are the backbone of high-performance computing systems such as Microprocessors and Digital signal processors.
Multipliers require more hardware resources and processing time, hence they are the slowest elements in the system. Multipliers
are mainly used in today's high-end Digital Signal Processors and they occupy a larger chip area because of their inherent
internal circuit complexity. Present-day co-processors are designed to support different size computations to achieve high
performance. Researchers have worked on signed and complex number multipliers used in co-processors of 64 bit and below.
There is a scope for designing a higher bit complex number multiplier to achieve higher performance. In this context, we proposed
to design of 128-bit complex number multiplier of various architectures such as Booth Multiplier, Modified Booth Multiplier,
Urdhva Multiplier and Nikhilam Multiplier using ModelSim SE 6.4 and Xilinx Vivado. In this work, various architectures such
as Booth Multiplier, Modified Booth Multiplier, Urdhva Multiplier and Nikhilam Multiplier for 8-bit, 16- bit, 32-bit, 64-bit and
128-bit designed using Verilog for complex number multiplication. Nikhilam is one of the sutras of Vedic mathematics which
is chosen for the implementation of complex number multiplier for area reduction. Synthesis reports are generated using the
Xilinx Vivado tool for speed and power comparison. From the comparison, we have observed that Booth, Modified Booth,
Urdhva, and Nikhilam occupy an area of 324.32%, 292.79%, 56.36%, and 46.70% respectively for 128-bit implementations.
Among all the implemented methods, the Nikhilam method for complex number multiplier occupies very less area i.e. only
46.70% on-chip area.

KEY WORDS: COMPLEX, CO-PROCESSORS, MULTIPLIERS,NIKHILAM, URDHVA

Design of 128-bit Complex Number
Multipliers for Co-Processor

Subodh Kumar Panda1, Rekha P2 and Bindu S3
Department of Electronics & Communication Engineering, BNM Institute of
Technology, Visvesvaraya Technological University, Karnataka, 560070 India

34

ARTICLE INFORMATION

*Corresponding Author: subodhpanda2013@gmail.com
Received 1th Oct 2020 Accepted after revision 27th Dec 2020
Print ISSN: 0974-6455 Online ISSN: 2321-4007 CODEN: BBRCBA

Thomson Reuters ISI Web of Science Clarivate Analytics USA and
Crossref Indexed Journal

NAAS Journal Score 2020 (4.31)
A Society of Science and Nature Publication,
Bhopal India 2020. All rights reserved.
Online Contents Available at: http//www.bbrc.in/
Doi: http://dx.doi.org/10.21786/bbrc/13.13/6

Biosc.Biotech.Res.Comm. Special Issue Vol 13 No 13 (2020) Pp-34-44

INTRODUCTION

Basic arithmetic operators – adders, subtractors and
multipliers are the core hardware sub-blocks of any
computational engine. It is a well-known fact that out of
these three units, the multiplier is the most area-hungry
unit as it has to deal with a lot of internal operations.
Multiplication operation is very important for an
arithmetic operation like correlation & convolution as
it has to perform information extraction from images,
frequency analysis, image processing, etc. The ancient

multipliers used the conventional method of repetitive
additions to calculate the product. If this conventional
design of a typical multiplier is to be implemented, it
requires around 200 full adders, which is extremely area
and power inefficient. Many multiplication methods have
been proposed and experimented with, to obtain the most
efficient architecture with efficient parameters such as
area, speed and power for the multiplier (P Subramani,
et al. 2019).

The most popular methods of multiplication consist of
Booth's algorithm, Modified Booth's algorithm, Braun
multiplication, and Wallace tree multiplication (M
Gudhimetla et al.,2017; Soniya, S Kumar et al.,2013).
Though these methods provide better speeds, the
computations involved are too complex, that they
increase the on-chip area consumption. The Indian
Mathematics, well known as Vedic Mathematics was
revisited by Rupanagudi (Huddar S.R. et al.,2013) and
implemented a Vedic Mathematics multiplier on FPGA.
Since then, several authors have been implementing Vedic

Panda et al.,

35

Mathematics based multipliers in several applications
related to the fields of communication, cryptography and
DSPs (S. R. Rupanagudi et al.,2014; S. Rao Rupanagudi
et al., 2019).

Related Work: As per the survey conducted, there are
numerous papers available that showcase different
architectures of multipliers that can be implemented on
a chip. The related work shows that the efforts were put
to improve the parameters such as area and power to be
reduced and speed to be increased. Meanwhile, there are
few drawbacks in the existing work done. For example,
the offset binary code (OBC) along with the distributed
arithmetic (DA) method, a multiplier is designed (A. P.
Pascual et. al.,1999). The drawback is that this method is
more complex and the area occupied is higher. A faster
multiplier is developed using Wen-Chang's Modified
Booth Encoder (MBE) (Razaidi Hussin et. al., 2008). The
disadvantage over here is MBE is not the smallest scheme
and hence size is larger which occupies more area.

Vedic Multiplier of 8-bit is implemented and the
propagation delay parameter is enhanced compared to an
array, Brawn, Modified Booth and Wallace tree Multiplier
(Pavan Kumar U.C.S et al., 2013). Vedic real Multipliers
are designed using Urdhva Sutra for 32 x 32-bit complex
number multiplier. Here, a comparison between path
delay and power consumption is done for the Booth
complex multiplier and hence observed that Vedic is
good which has the least power consumption and path
delay (K.Deergha Rao et al.,2016). Also, multipliers are
designed using Vedic mathematics sutras such as Urdhva
and Nikhilam. These methods have used modified full
adders and improved the speed parameter (Savita Patil et
al.,2014). A 32-bit complex multiplier is designed using
the Vedic algorithm and a comparison of its parameters
power and delay is carried out with a lower bit multipliers
such as 8bit and 16bit (Prof S. B. Somani et al.,2016;
Ankush Nikam et al.,2015).

Also, there are 32 x 32-bit multipliers implemented for
signed numbers using Urdhva and Nikhilam sutras. The
propagation delay of these multipliers is compared and
the outcome of the result says that the Urdhva multiplier
is faster for lower bit numbers whereas the Nikhilam
multiplier is faster for larger bit numbers (Nikhil R. Mistri
et al.,2016). These Vedic multipliers are designed for a
maximum of 64 bit signed numbers and maximum 32-
bit complex numbers in the existing work and improved
combinational delay and power (Manjunath et al.,2015;
Sai Venkatramana Prasada G S et al.,2018). The related
work consists of the multipliers designed for signed
and complex numbers using conventional methods like
Booth and Modified Booth algorithms and also using
Vedic sutras for the lower bits i.e. 32bit or 64 bit and
are resource expensive.

From the related work, we can observe that the various
multipliers are designed using different approaches
and methods to enhance the parameters such as area,
speed and power. Many have used Vedic mathematics
to improve the performance of Complex Number

Multiplier. There is a scope for designing a higher bit
complex number multiplier to reduce the on-chip area
consumption. In this context, we have proposed to
design a128 bit complex number multiplier of various
architectures such as Booth, Modified Booth, Urdhva,
and Nikhilam Multiplier using ModelSim SE 6.4 and
Xilinx Vivado.

METhODOlOgY

Complex Multipliers: The logic for using these multipliers
as complex multipliers is shown in figure 1. If (a+ib)
is the first complex number and (c+id) is the second
complex number, then the product is obtained as shown
in Eq. 1.

(a+ib) . (c+id) = ac + iad + ibc + i2db … (1)

As i2 is -1, the above equation becomes

(a+ib) . (c+id) = ac + iad + ibc + (-1) db (2)

Taking ‘I’ in common, the final equation (3) becomes

(a+ib) . (c+id) = (ac -db) + i (ad + bc) …(3)

Thus, the real part of the product is (ac-db) and the
imaginary part is (ad+bc)
The multipliers designed for complex numbers using
four methods are,

Booth Complex Number Multiplier1.
Modified Booth Complex Number Multiplier2.
Urdhva Complex Number Multiplier3.
Nikhilam Complex Number Multiplier4.

To develop a 128-bit complex number multiplier, initially,
an 8-bit code is implemented using Verilog for various
methods and it is used to describe 16, 32, 64, and 128-
bit code. The design is simulated and synthesized using
ModelSim SE 6.4 and Xilinx Vivado respectively.

3.1 Booth Complex Number Multiplier

The Booth multiplication algorithm is used to perform
multiplication operation between two's complement
of signed binary numbers. The booth algorithm is
a serial computation method as it depends on the
previous iteration value to compute the next steps in
the procedure. The logic flow of the algorithm is as

Figure 1: Basic block diagram of complex number
multiplier

Panda et al.,

 36

shown below. Considering 'X' as Multiplicand, 'Y' as
Multiplier, and 'Z' as the output, Booth's algorithm
works as per the table I. A zero is appended to the LSB
of two’s complement of Multiplier ‘Y’. Consider Yi and
Yi+1 from LSB to MSB pairwise and follow the Table I
i.e. if the bit pair is 00 and 11 then do arithmetic right
shift by 1. If the bit pair is 01 do +X and ASR by 1 and
if 10 then do –X and ASR by 1. Continue the procedure
until the last iteration.

3.2. Modified Booth Complex Number Multiplier:
The Modified Booth algorithm in two's complement
multiplies the signed binary numbers. But, in Modified
Booth Multiplier pair of 3-bits is considered from LSB
to MSB of the multiplier operand and then the logic
is applied to compute the operation. The number of
iterations is reduced in the Modified Booth algorithm
when compared to the Booth algorithm and hence
computation time is saved. In figure 3, the general
computation of multiplication using the Modified Booth
algorithm is shown. Considering 'X' as Multiplicand, 'Y'
as Multiplier, and 'Z' as the output, in table II working
of Modified Booth's algorithm is shown.

Table 1. Logic of Booth Multiplier

Functional flow of the Booth Algorithm:

A complex number multiplier of 128 bit is designed and
in figure 2 the block diagram of the 128-bit complex
number is as shown.

Figure 2: Block diagram of 128-bit complex number
Booth Multiplier

Figure 3: Block diagram of the Modified Booth
Algorithm

Functional flow of Modified Booth Algorithm: A zero is
appended to the LSB of two’s complement of Multiplier
‘Y’. Consider Yi, Yi+1, and Yi+2 from LSB to MSB pairwise
and follow Table II. Continue the procedure until the last
iteration. In figure 4, the Modified Booth multiplier of
the signed 128 bit is used to build the 128-bit complex
number Modified Booth multiplier.

3.3. Urdhva Complex Number Multiplier: Urdhva
Tiryagbhyam (“vertically and crosswise”) is the ancient
Sutra of Vedic Mathematics and is the easiest method
for multiplication.

Panda et al.,

right and move leftwards till you reach the extreme
column of digits on the left.
In each step carry generated is added to the next •	
step product.

In figure 5, a block diagram of the 128-bit complex
number Urdhva multiplier is shown.

Table 2. Modified Booth Multiplier Logic

Figure 4: Block diagram of 128-bit Complex number
Modified Booth Multiplier

Figure 5: Block diagram of 128-bit Complex number
Urdhva Multiplier

37

The steps for the Urdhva method is shown below:
In the above steps, initially, multiplication starts •	
from the right.
Multiply the extreme right column, in the obtained •	
product LSB is written, and MSB bits are carried
over for the next steps i.e. carry generated is added
in the next step.
From the left, the digits of the next column must be •	
cross multiplied.
For 4-digit X 4-digit, do a cross multiplication of •	
extremes and cross multiplication of middle digits.
Then start skipping the column of digits on the •	

Functional flow of Nikhilam complex number
multiplier

3.4 Nikhilam Complex Number Multiplier: Nikhilam

Panda et al.,

is the second sutra of 16 sutras of Vedic Mathematics
and is the easiest and shortcut method adopted for
multiplication and division. The usage of these methods
leads to the faster Multiplication of larger digit numbers.
The multiplication of various digit numbers using this
method includes few add, subtract, and shift operations.
It can save time when multiplying the numbers that are
nearer to the base of 2, 10, 100, 1000…etc.

The steps followed in Nikhilam sutra are as follows:

Step 1: Consider x1 and y1 as multiplicand and
multiplier, and always x1 should be greater than y1.

Step 2: Compare the multiplicand y1 with the bases of
2 i.e. 21, 22, 23 … so on such that y1 should be greater
than powers of 2.

Step 3: Subtract the power of 2 from x1 and y1 and the
resultants will be now x2 and y2.

Step 4: The above process continues until one of the
results of x1 and y1 equals to 1.

Step 5: The last terms whose one of the result equals to
1 should be multiplied. Ex: if x3 and y3 are the results
in which one of them is equal to 1 the do x3*y3.

Step 6: Then cross addition is done between one of the
final results and multiplicand of the previous stage. Also,
the final product is added to it. Later, the added result is
left-shifted by the Nth number of base 2 i.e. (2N).

Step 7: Step 6 is repeated till the initial stage of
multiplicand and multiplier but instead of final product
addition, the previous stage result is added, and hence
finally at the initial stage we obtain the result for
multiplication of large numbers.

Hence by following the above steps a 128-bit Nikhilam
signed number multiplier is designed. A Nikhilam
128 bit signed multiplier design is used to build the
block diagram of 128-bit Nikhilam complex number
multiplier.

RESUlTS AND DISCUSSION

Two 128 bit complex numbers (a+ib) and (c+id) are
multiplied using different methods using the formula,
(a+ib) . (c+id) = (ac -db) + i (ad + bc). The complex
number’s real part of the product is (ac-bd) and imaginary
part of the product is (ad+bc).

4.1. Simulation results of Booth Multiplier for 128 bit
complex numbers.

4.2. Simulation results of Modified Booth Multiplier for
128-bit complex numbers.

4.3. Simulation results of Urdhva Multiplier for 128 bit
complex numbers

Figure 6: Block diagram of 128-bit Complex number
Nikhilam Multiplier

 38

Panda et al.,

case (1) : in1_real a = -7743, in1_img b = 33224, and
in2_real c = 46721, in2_img d = 8345

prod_real = (ac-db) = {(-7743x46721) - (8345x33224)}=
84506423

prod_img = (ad+bc) = {(-7743x8345) + (33224x46721)}=

Figure 7: Simulation results of 128-bit Complex
Number Booth Multiplier

Figure 8: Simulation results of 128-bit Complex
Number Modified Booth Multiplier

Figure 9: Simulation results of 128-bit Complex Number
Urdhva Multiplier

39

1616873839

case (2) : in1_real a = -2213, in1_img b = -4561, and
in2_real c = -3865, in2_img d = 543212 .

prod_real = (ac-db) = {(-2213 x -3865) - (543212 x
-4561)}= 2486143177

prod_img = (ad+bc) = {(-2213 x 543212) + (-4561
x-3865)}= -1184499891

These results are obtained using ModelSim SE 6.4 as
shown in figure 9. The result obtained using manual
calculation and simulation is verified.

4.4. Simulation results of Nikhilam Multiplier for 128
bit complex numbers

case (1) : in1_real a = -4533211, in1_img b = -3378652,
and in2_real c = 223742, in2_img d = -2343267.

prod_real = (ac-db) = {(-4533211x223742) - (-2343267x-
3378652)}= 8931353431646

prod_img = (ad+bc) = {(-4533211x-2343267) +
(-3378652x223742)}= 9866577384553

case (2) : in1_real a = 5429911, in1_img b = 5471223,
and in2_real c = -5643239, in2_img d = 6789453.

prod_real=(ac-db)={(5429911 x -5643239) - (6789453 x
5471223)}= -67788896932748

prod_img=(ad+bc)={(5429911 x 6789453) + (5471223 x
-5643239)}= 5990706517386

These results are obtained using ModelSim SE 6.4 as

shown in figure 10. The result obtained using manual
calculation and simulation is verified.

4.5. Synthesis report of Area generated using Xilinx
Vivado tool for Booth, Modified Booth, Urdhva and
Nikhilam Complex Number Multipliers

Figure 10: Simulation results of 128-bit complex number
Nikhilam Multiplier

Figure 11: Area utilization of 128-bit Complex Number
Booth Multiplier

Figure 12: Area utilization of 128-bit Complex Number
Modified Booth Multiplier

Figure 13 :Area utilization of 128-bit Complex Number
Urdhva Multiplier

Figure 14: Area utilization of 128-bit Complex Number
Nikhilam Multiplier

 40

Panda et al.,

Area calculation: From the Synthesis report of area, it
is observed that the percentage of area utilized by the
resources such as Lookup Tables (LUTs), Flip Flops (FFs),
and Input-Output (IO) pins are shown in figure 11, figure
12, figure 13 and figure 14. Lookup tables are the main
building blocks of the FPGA. LUTs are a small piece
of RAM loaded with data whenever the FPGA chip is
powered up.

From the synthesis report of the area, it is observed that
FFs occupy a very negligible area. The area occupied
by the Input-Output Blocks (IOBs) should be ignored
because they represent the pins of the FPGA and we will

Figure 15: Speed Calculation for Booth 128 bit Complex
Number Multiplier

Figure 16: Speed Calculation of Modified Booth 128 bit
Complex Number Multiplier

Figure 17: Speed Calculation of Urdhva 128 bit Complex
Number Multiplier

41

Panda et al.,

not use them. Usually, the area is measured in terms of
percentage of occupancy and hence the percentage of
area occupied by LUTs is considered. The area occupied
by 128-bit Complex Number Booth, Modified Booth,
Urdhva, and Nikhilam Multipliers are shown in figure
11, figure 12, figure 13 and figure 14 respectively.

4.6. Synthesis report of Speed generated using Xilinx
Vivado tool for Booth,

Modified Booth, Urdhva and Nikhilam Complex Number
Multipliers
Speed Calculation: From the Synthesis report of Speed,
we can observe the timing results such as Logic delay and
Net delay of 128-bit complex number Booth, Modified
Booth, Urdhva, and Nikhilam Multiplier. Logic delay is
the measure of delay from input of logic gates to output
of the logic gates; the Net delay is the measure of delay
from output to input of the cell. The total delay indicates
the amount of time required by the multiplier to perform
the multiplication.

Total delay (ns) = Logic delay + Net delay
Speed (MHz) = 1/ Total delay (ns)

Total delay (ns) = Logic delay + Net delay = 99.081 +
116.272 = 215.353 ns

Speed (MHz) = 1/ Total delay (ns) = 1/ 215.353 (ns) =
4.643MHz

Therefore, the speed of the Booth 128 bit complex
Multiplier is 4.643MHz

Total delay (ns) = Logic delay + Net delay = 71.770 +
83.284 = 155.054 ns

Speed (MHz) = 1/ Total delay (ns) = 1/ 155.054 (ns) =
6.449MHz

Therefore, the speed of the Modified Booth 128-bit
complex Multiplier is 6.449MHz

Total delay (ns) = Logic delay + Net delay = 14.406 +
9.973 = 24.379 ns

Speed (MHz) = 1/ Total delay (ns) = 1/ 24.379 (ns) =
41.018MHz

Therefore, the speed of the Urdhva 128 bit complex
Multiplier is 41.018MHz

Total delay (ns) = Logic delay + Net delay = 13.893 +
13.352= 27.245 ns

Figure 18: Speed Calculation of Nikhilam 128 bit
Complex Number Multiplier

Figure 19: Power calculation for Booth 128 bit Complex
Number Multiplier

Figure 20: Power Calculation of Modified Booth 128 bit
Complex Number Multiplier

Figure 21: Power calculation of Urdhva 128 bit
Complex Number Multiplier

Figure 22: Power calculation of Nikhilam 128 bit
Complex Number Multiplier

Table 3. Area, Speed and Power Comparison of 128-bit
Complex Number Multiplier

Figure 23: Area Utilization comparisons of the complex
number multipliers

 42

Panda et al.,

Speed (MHz) = 1/ Total delay (ns) = 1/ 27.245 (ns) =
36.703MHz

Therefore, the speed of the Nikhilam 128 bit complex
Multiplier is 36.703MHz

4.7. Synthesis report of Power generated using Xilinx
Vivado tool for Booth, Modified Booth, Urdhva and
Nikhilam Complex Number Multipliers

From Table III, it is observed that the area utilization
by 128-bit Nikhilam complex number multiplier is
46.70% as compared to the complex number Urdhva
multiplier. Thus, 128-bit complex number Nikhilam
multiplier is recommended to achieve a reduced chip
area for a co-processor design. The power consumed by
the 128-bit Nikhilam complex number multiplier is more

than the Urdhva multiplier. The speed of computation
of the Urdhva multiplier is better than the Nikhilam
multiplier. It is observed that there is a tradeoff between
area utilization and power consumption of Urdhva and
Nikhilam complex number multiplier. If we switch from
Nikhilam complex number multiplier to the Urdhva
multiplier than the area requirement is more and the
percentage change in area is by 20.68. Similarly, if we
switch from Nikhilam to Urdhva multiplier than the
power requirement is less and the percentage change of
power is 30.61.

Figure 24: Speed comparisons of the complex
number multipliers

Figure 25: Power comparisons of the complex number
multipliers

The area utilization, speed, and power comparison of
Booth, Modified Booth, Urdhva, and Nikhilam for 128-
bit complex number multipliers are shown in figure 23,
figure 24, and figure 25.

CONClUSION

In this paper, Complex number multipliers for 128 bits
are designed using various methods such as the Booth
algorithm, Modified Booth algorithm, Urdhva Sutra,
and Nikhilam Sutra. The various architectures of 128-
bit complex numbers designed are simulated using the
ModelSim SE simulation tool and synthesized using the
Xilinx Vivado tool. From the Synthesis reports area,
speed and power results are obtained. The areas of all
the 128-bit complex number multipliers are compared
based on the number of LUTs occupied and since the
area occupied by FFs is negligible.

From the area, speed, and power comparison of Booth,
Modified Booth, Urdhva, and Nikhilam 128 bit complex

number multipliers, it is observed that the area occupied
by 128-bit Nikhilam complex number multiplier is least
i.e. 46.70%. The power consumption of 128 bit Urdhva
complex number multiplier is least compared to other
128-bit complex number multipliers. Thus, there is a
tradeoff between area and power, and hence wherever
area is preferred, 128-bit Nikhilam complex number
multiplier can be used and where the power is preferred,
128 bit Urdhva complex number multiplier can be used.
These designed 128-bit complex number multiplier
architectures can be used in highly efficient co-processor
design to reduce chip area.

REFERENCES
 A. P. Pascual, J. Valls, and M.M. Peird (1999), Efficient

Complex-Number multipliers mapped On FPGA, 6th
IEEE International Conference on Electronics, Circuits
and Systems, ISBN: 0-7803-5682-9.

 Ankush Nikam, Swati Salunke, Sweta Bhurse(2015),
Design and Implementation of 32bit Complex
Multiplier using Vedic Algorithm,International Journal
of Engineering Research & Technology, Vol. 4 Issue
03,Center for VLSI and Nanotechnology Visvesvaraya
National Institute of Technology Nagpur, Maharashtra,
India.

 Huddar S.R., Rupanagudi S.R., Janardhan V., Mohan S.,
Sandya S. (2013) Area and Speed Efficient Arithmetic
Logic Unit Design Using Ancient Vedic Mathematics on
FPGA”. In: Unnikrishnan S., Surve S., Bhoir D. (2013)
Advances in Computing, Communication, and Control.
Communications in Computer and Information Science,
Springer, Berlin, Heidelberg, Vol 361.

 K.Deergha Rao, Ch. Gangadhar, Praveen K Korrai(2016),
FPGA Implementation of Complex Multiplier Using
Minimum Delay Vedic Real Multiplier Architecture,
International Conference on Electrical, Computer and
Electronics Engineering. Indian Institute of Technology
(Banaras Hindu University) Varanasi, India. ISBN:978-
1-5090-5384-1.

 M Gudhimetla, C M Ananda, (2017) Comparison of
Different Types of Multipliers for Speed, Area, And
Power, International Journal of Industrial Electronics
and Electrical Engineering, 5(12): 83-87.

 Manjunath, Venama, Harikiran, Kopparapu, Manikanta,
Sivanantham S, Sivasankaran K(2015), Design and
Implementation of 16x16 Modified Booth Multiplier,
International Conference on Green Engineering and
Technologies, 978-1-4673-9781-0, VIT University,
Vellore, India.

 Nikhil R. Mistri, Prof S. B. Somani, Prof Dr. V. V. Shete
(2016), Design and Comparison of Multiplier using Vedic
Mathematics, International Conference on Inventive
Computation Technologies, ISBN:978-1-5090-1285-5,
Pune, India.

 Pavan Kumar U.C.S, Saiprasad Goud A, A.Radhika(2013),

43

Panda et al.,

FPGA Implementation of high speed 8-bit Vedic
multiplier using barrel shifter, International Conference
on Energy Efficient Technologies for Sustainability,
ISBN:978-1-4673-6150-7.

 Prof S. B. Somani, Nikhil R. Mistri (2016), Study of
Vedic Multiplier Algorithms using Nikhilam Method",
International Journal of Advanced Research in
Electrical, Electronics and Instrumentation Engineering
Vol. 5, Issue

 Razaidi Hussin1, Ali Yeon Md. Shakaff2, Norina
Idris1, Zaliman Sauli1, Rizalafande Che Ismail1, and
Afzan Kamarudin1(2008), An Efficient Modified Booth
Multiplier Architectur, International Conference on
Electronic Design, Penang, Malaysia. ISBN :978-1-
4244-2315-6/08.

 S. R. Rupanagudi et al. (2014), Design of a low power
Digital Down Converter for 802.16m - 4G WiMAX
on FPGA, International Conference on Advances in
Computing, Communications and Informatics, New
Delhi, Pages 2303-2308.

 S. Rao Rupanagudi et al. (2019), A Further Optimized
Mix Column Architecture Design for the Advanced
Encryption Standard, International Conference on
Knowledge and Smart Technology, Phuket, Thailand,

Pages 181-185.
 Sai Venkatramana Prasada G S, G Seshikala, Niranjana

Sampathila(2018), Performance Analysis of 64x64 bit
Multiplier Designed Using Urdhva Tiryakbyham and
Nikhilam Navatashcaramam Dashatah Sutras, IEEE
Distributed Computing, VLSI, Electrical Circuits and
Robotics, Manipal Institute of Technology Manipal
Academy of Higher Education Karnataka, Manipal,
India.

 Savita Patil, D.V.Manjunatha, Divya Kiran (2014), Design
of Speed and Power Efficient Multipliers Using Vedic
Mathematics with VLSI Implementation, International
Conference on Advances in Electronics Computers and
Communications, ISBN:978-1-4799-5496-4.

 Soniya, S Kumar(2013), A Review of Different Type
of Multipliers and Multiplier-Accumulator Unit,
International Journal of Emerging Trends & Technology
in Computer Science, 2(4) : 364 -368.

 Subramani, Prabu, Ganesh Babu Rajendran, Jewel
Sengupta, Rocío Pérez de Prado, and Parameshachari
Bidare Divakarachari. "A Block Bi-Diagonalization-
Based Pre-Coding for Indoor Multiple-Input-Multiple-
Output-Visible Light Communication System." Energies
13, no. 13 (2020): 3466.

 44

Panda et al.,

