
ABSTRACT
Floor-planning is a very important stage in the VLSI Physical design process. It determines size, performance, reliability
and yield of the VLSI chips. VLSI floor-planning is considered as NP-hard in computational point of view. The modern
VLSI technology is associated with fixed outline floor-plan constraint and the objective is to minimize the area and
wire-length between the modules. In this paper Particle Swarm Optimization (PSO) algorithm is proposed. PSO is used to
optimize the floor-plan area and to represent the floor-plan for non-slicing structure, where area is the physical quantity
that is considered for optimization. PSO is an effective swarm intelligence search method which explores the search
space during the optimization process to find a near optimal solution. The proposed PSO algorithm is tested with the
Microelectronics Centre of North Carolina benchmark circuits (MCNC). The obtained results show that the proposed PSO
has better optimization of area of floor-plan with optimal run-time compared to other existing optimization schemes.
An area improvement of 7.8% and 11.9% is obtained with MCNC benchmarks ami33 and XEROX10 as compared to the
existing methods.

KEY WORDS: Optimization, Physical Design Process, PSO, VLSI Floorplanning.

VLSI Floorplan Area Optimization using Swarm
Intelligence

Ashwini Desai1 and Vishal Pattanad2

1Department of Electronics and Communication Engineering
2Department of Electronics and Communication Engineering
1,2KLE Dr. M. S. Sheshgiri College of Engineering and Technology, Belagavi, India

114

ARTICLE INFORMATION

*Corresponding Author: ashwinipri19@gmail.com
Received 11th Oct 2020 Accepted after revision 27th Dec 2020
Print ISSN: 0974-6455 Online ISSN: 2321-4007 CODEN: BBRCBA

Thomson Reuters ISI Web of Science Clarivate Analytics USA and
Crossref Indexed Journal

NAAS Journal Score 2020 (4.31)
A Society of Science and Nature Publication,
Bhopal India 2020. All rights reserved.
Online Contents Available at: http//www.bbrc.in/
Doi: http://dx.doi.org/10.21786/bbrc/13.13/16

Biosc.Biotech.Res.Comm. Special Issue Vol 13 No 13 (2020) Pp-144-121

INTRODUCTION

VLSI physical design process is used to map the circuit
components into layout of the circuit. This is accomplished
in multiple stages as partitioning, floor-planning,
placement, routing and compaction (Sherwani, 1999).
Floor-planning is an important stage in the physical
design process. It deals with placement of rectangular
areas allocated to explicit circuit modules which are to
be included on a chip. Every module has millions of cells
which perform some arithmetic or logical operation. The

goal of floor-planning is to optimize the total chip area
which includes area of components and interconnects.

Floor-planning is considered to be NP hard. Many
heuristic algorithms are proposed in the literature to solve
the floor-planning problem. Non-deterministic methods
such as simulated annealing (SA) have been proposed.
An iterative approach is used; relaxation of modules
and then simulated annealing is used to generate a near
optimal solution. The best floor-plan can be chosen
from the generated near optimal solutions (Ashwini
Desai and Uday Wali, 2020). A modified SA algorithm
is discussed by Yifan Weng et al., (2019). The authors
applied a two-step strategy, finding a feasible solution
and optimizing. The algorithm is proved to be efficient
for the fixed-outline floor-planning. De-xuan ZOU et al.,
(2016) propose another modified SA algorithm which is
applied for fixed outline floor-planning. Their results
show a stronger capacity to exploit the solution space
compared to SA.

Desai & Pattanad

115

Many computational methods viz Particle swarm
optimization techniques are used to optimize a floor-
planning problem using iterative approach to improve
a candidate solution. Zhenyi Chen et al., (2012) have
proposed a hybrid PSO that can handle fixed outline
floor-planning. The authors applied a linear decrease
process to balance between global and local exploration
abilities. This reduced the number of computations and
iterations to locate the optimum. Tsung-Ying Sun et
al., (2006) discuss PSO with B* tree for floor-planning
problem to explore the solution space more efficiently
than SA. The authors show that the proposed approach
exhibits rapid convergence and leads to near optimal
solutions.

Venkatraman and Sundhararajan (2017) describe PSO
using polish expression to fix modules with fixed
outline constraint and a Hybrid Ant colony optimization
technique which can reduce the calculation time and can
produce the enhanced floor-plan arrangement, it mainly
concentrates on giving more suitable floor-plan in less
time. Paramasivam S et al., (2016) propose a hybrid
method using PSO and Harmony Search (HS) to achieve
global optima and local optima. The results obtained
show an optimal solution for larger number of modules.
Guolong Chen et al., (2008) discuss a Discrete PSO (DPSO)
algorithm to explore the search space and to find an
acceptable solution. Amarjot Kaur et al., (2016) propose
hybrid particle swarm and ant colony optimization (PSO/
ACO) algorithm for non-slicing floor-plans to achieve
optimized solution. Area optimization during floor-
planning is considered to be very important as the area
utilized by the floor-plan will decide the overall chip
size. It is also difficult to arrive at a lower bound on the
estimated area. Hence, a near optimal solution is chosen
to be satisfactory.

This paper proposes a PSO algorithm for VLSI floor-
plan area optimization. Non-slicing floor-plans are
considered for optimization as they are comparatively
difficult to optimize than the slicing type of floor-plans.
The proposed PSO for the floor-plan optimization can
be implemented for any number of modules or blocks.
PSO method is easy to understand; each parameter in
the PSO can be controlled and can be varied according
to the requirements easily. If the number iterations are
to be increased or decreased it can be done by changing
the assigned value for the variable. The only parameters
that vary from one floor-plan to other are the number
of blocks and the velocity assigned to each particle.
The feasibility of the solution can be known easily and
PSO has higher probability in finding the global optima
compared to other methods as only few parameters are
used.

When there is no overlapping between modules, the
solution is said to be feasible until than the solution is
infeasible, it helps in knowing if the solution obtained
is better or not. The solution can be obtained for any
number of modules but at the cost of time, the time
required to obtain feasible solution goes on increasing
as the number of modules increase. The results in this

paper show near optimal solutions can be obtained with
proposed PSO as compared to other algorithms.

A. Problem definition: Given a set consisting of n blocks
B= {b1, b2…..bn}, where every block is rectangular
in shape with predefined width (wi) and height (hi)
respectively. The overall width (W) and height (H) of
the floor-plan design are defined. The main objective
of floor-planner is to assign a position to each block
within the predefined area of floor-plan (F), such that
the blocks do not overlap with each other and there
should be a minimum space between each block for the
interconnects. Finally the floor-plan has to be optimized
so as to obtain a near optimal solution.

The conditions to be considered during the optimization
process are

The number of blocks remains the same before and 1.	
after the optimization process.
There should be no overlap between any two or 2.	
more blocks.
Every block must lie in the predefined rectangular 3.	
region with a predefined aspect ratio.
All the blocks should be parallel to the coordinate 4.	
axis of the predefined floor-plan area F.
Taking into consideration the above conditions, PSO 5.	
algorithm for VLSI floor-plan with area optimization
is to be implemented.

B. Floor-planning model: Floor-planning is the
placement of flexible blocks with fixed area but unknown
dimensions. Floor-planning can be classified as slicing
floor-plans and non-slicing floor-plans. The slicing floor-
plan can be cut horizontally or vertically, whereas a non-
slicing floor-plan cannot be cut either horizontally or
vertically. B*-tree can be used to represent a non-slicing
floor-plan, where the modules are at cut leaves and the
cut types are at the internal nodes.

The floor-plan is divided horizontally (H cut) or vertically
(V cut). In horizontally sliced floor-plan, the top or
bottom sub-floor-plan is represented by the left or right
child whereas; in the vertically sliced floor-plan the left
or right sub-floor-plan is represented by the left or right
child. The slicing floor-plan may correspond to more than
one slicing trees, depending on the order of the cut-line
sections. Figure 1.a and b represents the non-slicing
floor-plan and the slicing floor-plan respectively.

Figure 1: Floor-plan representations a) non-slicing, b)
slicing

Desai & Pattanad

 116

Non-slicing floor-plans can be represented by Horizontal
constraint graph (HCG) and Vertical constraint graph
(VCG). The HCG defines the relations of the modules with
respect to horizontal interconnections, and VCG defines
the relations of the modules with respect to vertical
interconnection of the modules. Figure 2 represents a
slicing floor-plan and its slicing tree. V refers to the
vertical cut and H refers to the horizontal cut.

to be an alternate solution for most of the complex
non-linear optimization problems. It was introduced
by Dr. Kennedy and Dr. Eberhart in the year 1995. The
analogy is taken from the flock of birds or insects that
migrate from one place to the other in search of food,
in the search space. These birds or insects are unaware
of the best position in the search space. If any member
could find the desirable path from their social behavior,
the remaining members will also follow the same path
quickly. This algorithm is derived from the behavior or
activity of animals to solve the optimization problems.
Every member included in the population is a particle
and the population of particles is called as a swarm.
Initially the population moves in a random direction,
every particle moves in the search space in search of best
position and it remembers the previous best position of
itself and its neighboring particles.

In PSO, particles communicate with every other particle
in the swarm for good positions. They dynamically adjust
their positions as well as velocity which are derived
from the best position of all the particles in the swarm.
Until the swarm moves close to an optimum fitness
function, all the particles try to find better positions in
the search space. The main reason for the popularity of
PSO algorithm is its simplicity in the implementation and
its ability to converge to a better solution. It uses only
the mathematical operators and without any gradient
information of the function to be optimized.

The PSO method is more efficient, cheaper and faster
when compared with the other existing optimization
methods. The problems like non-convex, non-linear,
discrete, continuous, integer variable can be easily
solved by PSO. It is known that the PSO is a technique
impressed by the swarm intelligence. It is the population
based evolutionary formula initialized with a population
of random solutions. Since the population initialized
is random, the particles tend to occupy random places
or positions within the boundary initialized for the
floor-plan. Each particle in the swarm looks for the
best position by communicating with the neighboring
particles and occupies the position if it is best suited for
it and its neighboring particles.

If the current position is better than the best position, the
current position is updated as the best position. Present
best position is represented as PBEST and the global best
position is represented as GBEST. The PBEST and GBEST
are updated until all the iterations are done. Along with
updating the PBEST and GBEST, the fitness value is also
updated, which in turn gives the cost value. This updating
is done until all the particles tend to fly towards higher
and higher positions and until the entire swarm moves
close to an optimum solution. When all the particles
occupy the best positions once, the solution is said to
be feasible until then the solution is not feasible. That is
if two or more blocks overlap with each other, then the
solution is not feasible. Once all the blocks are at their
best suited positions without any overlap between the
blocks then the solution is said to be feasible.

Figure 2: Slicing floor-plan and its tree

Figure 3: Floor-plan and its B*-tree representation

C. B*-tree representation: B*-tree representation is the
binary tree representation of the compact floor-plan.
No modules can be moved towards left or bottom in
the representation of the compact floor-plan. B*-trees
representation is simple. It can be said that the area-
optimal floor-plan always refers to some B*-tree. B*-trees
are easy to implement; they inherit some properties of
the ordered binary trees. They can perform primitive tree
operations like search, insert, and delete. The module at
the left bottom corner represents B*-tree root. To obtain
the root of the B*-tree, sub-tree is constructed first.

The B*-tree has geometric relationship between all
the blocks with respect to the nodes of all the trees
corresponding to it. In order to obtain the optimized
floor-plan, the B*-tree is used for performing certain
operations like rotation of the blocks, deletion of blocks,
swapping of the blocks and flipping of the blocks
according to the floor-plan requirements. Figure 3 shows
the floor-plan with different blocks M0 to M10 with its
corresponding B*-tree representation.

D. Basic PSO Algorithm: The basic PSO is a stochastic
population based search algorithm. It is considered

Desai & Pattanad

METHODOLOGY

The proposed optimization method is inspired from the
basic PSO algorithm. In this case the population taken
into consideration is the number of blocks to be placed
in a floor-plan area. Initially the parameters such as
population size, number of iterations for the optimization,
inertia weights, and the learning coefficients are to be
loaded. The modules have different dimensions and
are rectangular in shape, the width and height of each
module is to be known before the optimization process.
Since every particle moves with a certain velocity, a
velocity matrix is constructed with a number of rows
and columns equal to the number modules.

The steps in the proposed Particle Swarm Optimization
(PSO) algorithm are as follows:
Step1: Initialize the population size, number of iterations
for the optimization and the
acceleration coefficients.
Step 2: Load the dimensions of each module (width and
height), and the parent dimensions.
Initialize the velocities of each particle randomly.
Step 3: Initially the modules take some random positions
within the parent region defined.
Step 4: The fitness value of every particle is calculated
and best global position GBEST and
best particle position PBEST are updated.
Step 5: The PBEST value is updated with the fitness value
if it is better than the previous value
for all iterations.
Step 6: If the GBEST obtained is better than the previous
one, update it with the value obtained
in the current iteration.
Step 7: The modules can swap with other modules, or
can move from one position to other or
can be rotated for the better position within the parent
region.
Step 8: Once all the modules are at their optimum region
within the bound and without any
modules overlapping with each other, the cost function
is feasible.
Step 9: If the feasibility is not obtained, then increase
the number of iterations or the parent
module dimensions.
Step 10: The steps from 4 to 9 are repeated until all the
iterations are done.
Step 11: The termination condition is the number of
iterations defined.

The main parameters that are considered in PSO
algorithm are w, c1, c2, velocity and the size of swarm.
These parameters influence the optimization of the search
space. The values of w, c1, c2 can be same for all the
optimization problems, whereas the velocity and the
swarm size differ. The inertia weight w can control the
momentum of the particles. If w<1, momentum preserved
is very little so the change in the positions/directions of
particles can be observed quickly. If w=0, the particles
move without any knowledge of the previous velocity
of the particle. If w>1 (high), the particles do not change

the directions/positions rapidly. If the swarm size is low
(from 10 to 20), the optimization becomes easier. All
the particles in swarm can find the best position at a
less time thereby reducing the total time to optimize the
solution. Whereas for higher swarm size, usually the time
to optimize the solution is high since every particle has
to search and occupy the best position and then optimize
which takes more time.

The PSO performs three main operations on the particles/
modules: swap, rotate and move. In swap, two particles
swap their positions with their mutual understanding if
the position is best suited for them. In move and rotate
the individual particle has to change its position or rotate
at right angles if the optimum position can be occupied.
All the particles perform these three operations until all
the particles are placed at the optimum position or until
the termination condition is achieved. The termination
condition is the number of iterations itself.

Consider a floor-plan region F, which is the area of floor-
plan region and all the modules are to be placed on this
region. The set of modules can be defined by M= {b1,
b2,….bn}. Each module has to be placed in the defined
region F such that no modules overlap with each other
and all the modules are placed within the region F and a
minimum space is to be maintained between each block
for the interconnect. A velocity matrix is defined with a
matrix size equal to number of modules; if the number of
modules is 10 then a velocity matrix of 10*10 is defined
with some random values. The dimension of matrix is
proportional to the number of modules. To calculate the
fitness value of particles the cost function is used and is
given by equation 1.

The initializations that are to be made are as follows;
number of modules, number of iterations, inertia weight
and the acceleration coefficients (c1, c2). Further the
floor-plan region F is defined with the dimensions of
floor-plan region also referred to as the parent. The
width and height of the parent is defined. The modules
that are to be placed are defined in a set of values with
their widths and heights defined:

w= [w1, w2, w3…wn]

h= [h1, h2, h3 …hn]

Where, w and h corresponds to the set of width and
heights respectively. And w1, w2, w3…wn represent the
widths of modules and h1, h2, h3 …hn represent the
heights of modules. In PSO, the particle is referred as
a point. In this implementation the rectangular blocks
are to be placed in the floor-plan region and thus two
random points on each rectangular block is assumed rin
and rout. These points are used to perform the operation
like swap, rotate and move. Delta (d) is the gap between
the modules.

117

Desai & Pattanad

Initially the modules are placed at a random position
within the floor-plan region F defined. Using a function
x=zeros (1, n), the random 1*n matrix is defined for the
positions of the modules. Once the optimization process
begins, the modules start to occupy the best position.
During the optimization process the solution is considered
infeasible if two or more modules overlap each other
and when all the modules are at the optimum positions,
without any overlapping of modules then the solution
is considered to be feasible. The solution obtained from
this optimization method is random. And the solution
obtained can be used for further applications. Initially the
swarm distributes the modules in the random positions
in the solution space. The velocity of each particle at
mth iteration is given by the equation 2.

	
					 (2)

Where, vm,n is the velocity of mth particle in the nth
dimension, w denotes the inertia weight which lies
between 0 and 1, ym’ is the global best, c1 and c2 are
referred to as acceleration coefficients which are defined
randomly, and r1m (k) r2n (K) ~ U(0, 1) is some random
value usually ranging in [0, 1] which is sampled from
the uniform distribution. For each particle (here in this
case modules or blocks), its position is updated for every
iteration until the termination condition is reached. And
this position can be given by equation 3.

	 (3)

The personal best and the global best are updated along
with the change in the position of the particle for all the
iterations. The global best is updated from the personal
best if the current personal best is superior than the
previously obtained personal best. ym represents personal
best position represented by equation 4.

						 (4)

The parameters that are considered during optimization
are swarm size, inertia weight, number of iterations and
acceleration coefficients,

If the swarm size is large then for all the iterations, the
large part of search space is covered. But it degrades
the parallel search for the position of the particles and
the iteration computational complexity also increases.
Therefore the small swarm size is optima for the
optimization. The acceleration coefficients c1 and c2
are the variables that control the overall velocity of
the optimization process. If c1 and c2 are both zero, the
particles are free to move in search space with no change
in velocity. If c1 > 0 and c2 = 0, then each particle will
find the best position in search space by local search and
if the current position is better it replaces the current
position. Conversely, if c1 = 0 and c2 > 0, the particles
in the swarm start moving towards one single point

which is the best position and hence the overlap of the
modules occur.

If c1 > c2 then each particle can be seen moving towards
its personal best and if c2 > c1, then there is the change
in the particles motion where the particles now move
towards its global best position. If c2 = c1 then particles
move towards the position which is average of the
personal best and global best positions. Through inertia
weight, momentum of the particles can be controlled, if
w > 1, for higher inertia weights the particles generally
move with high velocity and in this case the direction
of the particle is changed so that a new position can
be occupied. Whereas if w < 1 the particles move with
decreasing acceleration until the velocity is reached to
zero. If the number of iterations is very low, then the
optimization may or may not be completed before all
the iterations are over. And if the number of iterations
is too high, it leads to the unnecessary computational
complexity. So the number of iterations should be chosen
wisely.

RESULTS AND DISCUSSION

The PSO algorithm for VLSI floorplan optimization
is implemented using MATLAB R2020a version
9.8.0.1323502 and Simulink. The parameters required
for the optimization are set as w=0.9, c1=0.7, c2=1.5.
Maximum number of iterations is MaxIt=1000. Certain
parameters like the population or the swarm size, width
and height of the parent module (W and H), width and
height of modules (w and h), random points on modules
(rin and rout), spacing between the modules (d) and the
velocity matrix which is n*n matrix where n corresponds
to number of particles are to be defined for every new
optimization problem.

The PSO algorithm is applied for a random floor-plan
with 10 modules and 29 modules initially. Figure 4.a
shows the random initial floor-plan with 10 modules. To
search for the best position in the search space, initially
all the blocks are placed at random positions without any
overlap. Further the best position is attained by checking
for the current position of each block and the minimum
space between two blocks. For every iteration, if the
global best is better than the personal best, the position
of the block is updated else the position does not change.
Figure 4.b shows the near optimal floor-plan obtained
for the random initial floor- plan with 10 blocks. PSO
algorithm is also applied for random floor-plan with 29
modules for which the initial and near optimal floor-
plans are shown in figure 5.a and 5.b.

Table 1 shows the experimental results for a random
floor-plan with 10 modules and 29 modules. For
each of the cases the initial floor-plan area and the
optimized floor-plan area and time elapsed to complete
the optimization is mentioned. For floor-plan with 10
modules and 29 modules, an area improvement of 15.7%
and 12.4% respectively is seen as compared to the initial
input floor-plan.

 118

Desai & Pattanad

Figure 4.a: Random initial Floor-plan for 10 modules Figure 4.b: Near optimal Floor-plan for 10 modules

Figure 5.a: Random initial Floor-plan for 29 modules Figure 5.b: Near optimal Floor-plan for 29 modules

No. Of Blocks	 Parent [height, width]	 Initial floorplan	 Area	 Time elapsed
	 (mm2)	 area (mm2)	 Optimized (mm2)	 (in seconds)

10 blocks input	 [200,195]	 0.039	 0.032872	 187.89801
29 blocks input	 [360,360]	 0.1296	 0.113492	 509.28092

Table 1. Experimental Results Of Proposed Pso For Floor-Plan With 10 And 29 Modules

The proposed PSO algorithm was tested with ami33 and
XEROX10 MCNC benchmark circuits. Figure 6 and 7
show the near optimal floor-plan for MCNC ami33 and
XEROX10 benchmark circuits. Table 2 shows comparison
of the proposed PSO with Hybrid PSO/ACO (Amarjot Kaur
et al., 2016) and Discrete Particle Swarm Optimization
(DPSO) (Guolong Chen et al., 2009).

The results obtained from the proposed PSO algorithm
show an area improvement of 7.8% over Hybrid PSO/
ACO and DPSO for MCNC ami33 benchmark. For MCNC
benchmark XEROX10 an improvement in area of 4.1%
over Hybrid PSO/ACO and 11.9% over DPSO is obtained
from the proposed PSO. Therefore it is observed that
the results obtained from the PSO method are better
compared to other existing methods.

119

Figure 6: Near optimal Floor-plan for ami33 benchmark Figure 7: Near optimal Floor-plan for XEROX10
benchmark

MCNC Benchmark	 Number of modules	 Hybrid PSO/ACO	 DPSO	 Proposed PSO
		 Area optimized in mm2

ami33	 33	 1.28	 1.28	 1.3863
XEROX10	 10	 21.70	 20.2	 22.66

Table 2. Results Of Comparison With Existing Methods and Proposed Method

CONCLUSION

In this paper, a PSO algorithm for VLSI floor-plan
optimization is implemented. The experimental
results show that PSO is the best scheme for floor-
plan optimization. PSO produces better results when
compared to the other existing methods. Initially the
implementation was done on few modules with lesser
floor-plan area in order to check the feasibility. Table
1 shows parent height and width chosen, the total area
optimized and time elapsed for two initial floor-plans
with 10 and 29 modules. Area improvement of 15.7%
and 12.4% was obtained for floor-plan with 10 and 29
modules respectively as compared to the initial floor-plan
area. Since the number of iterations was set to 1000, the
elapsed time is high.

The performance of the algorithm was tested with
MCNC benchmark circuit ami33 and XEROX10 and the
results obtained are shown in Table 2. The proposed
PSO algorithm was compared with the existing methods
Hybrid PSO/ACO (Amarjot Kaur et al., 2016) and Discrete
Particle Swarm Optimization (DPSO) (Guolong Chen et
al., 2009). The results show that the area optimization
for floor-plan is better in case of PSO method. An
improvement in floor-plan area of 7.8% was seen in
Hybrid PSO/ACO and DPSO with MCNC benchmark
ami33 whereas an area improvement of 4.1% over Hybrid

PSO/ACO and 11.9% over DPSO was achieved with MCNC
benchmark XEROX10.

REFERENCES
	 Amarjot Kaur, Dr. Sandeep Singh Gill (2016) Hybrid

Swarm Intelligence for VLSI Floor-plan. International
Conference on Computing, Communication and
Automation (ICCCA2016) ISBN: 978-1-5090-1666-2/16
Pages 224 – 229.

	 Ashwini Baligatti, Ashwini Desai ,Uday Wali (2014) Free
Area Estimator for Simulated Annealing of VLSI Floor
Plans. International Journal of Innovative Research
in Computer Science & Technology ISSN: 2347-5552
Volume-2 Issue-4 July-2014 Pages 52 – 55.

	 Ashwini Desai, Ashwini Baligatti, Harsha Pal, Savita Y.
Barker, Uday Wali (2014) Development of EDA Tool with
Easy Plugin for New VLSI Algorithms. International
Journal of Engineering Science and Innovative
Technology Volume 3 Issue 4 July 2014 Pages 354
-359.

	 Ashwini Desai, Uday Wali (2020) Effect of Module Order
on VLSI Floor Planning using Simulated Annealing. IEEE
International Conference on Electronics, Computing
and Communication Technologies (CONECCT 2020)
Electronic ISBN: 978-1-7281-6828-9 IEEE Xplore 16
September 2020.

 120

Desai & Pattanad

	 De-xuan ZOU, Gai-ge WANG, Gai PAN, Hong-wei
QI (2016) A modified simulated annealing algorithm
and an excessive area model for floor-planning using
fixed-outline constraints. Frontiers of Information
Technology & Electronic Engineering ISSN 2095-9184
(print) ISSN 2095-9230 (online) November 2016 Pages
1228 – 1244.

	G uolong Chen, Wenzhong Guo, Hongju Cheng, Xiang
Fen and Xiaotong Fang (2008) VLSI Floor-planning
Based on Particle Swarm Optimization. Proceedings of
2008 3rd International Conference on Intelligent System
and Knowledge Engineering IEEE Xplore 30 December
2008 ISBN:978-1-4244-2196-1 Pages 1020 – 1025.

	 Paramasivam, S., Athappan, S., Natrajan, E.D. and
Shanmugam, M. (2016) Optimization of Thermal Aware
VLSI Non-Slicing Floor-planning Using Hybrid Particle
Swarm Optimization Algorithm-Harmony Search
Algorithm. Circuits and Systems Vol 7 No 5 April 2016
doi.org/10.4236/cs.2016.75048, Pages 562-573.

	 S. Venkatraman, M. Sundhararajan (2017) Particle
Swarm Optimization Algorithm for VLSI Floor-planning
Problem. Journal of Chemical and Pharmaceutical
Sciences ISSN: 0974-2115 JCPS Volume 10 Issue 1
January - March 2017 Pages 311 – 316.

	 S.Venkatraman, Dr.M.Sundhararajan (2017) Optimization

for VLSI Floor-planning Problem by using Hybrid Ant
colony Optimization technique. International Journal of
Pure and Applied Mathematics Volume 115 No. 6 2017
ISSN: 1311-8080 (printed version) ISSN: 1314-3395
(on-line version) Pages 637-642.

	 Sherwani N. (1999) Algorithms for VLSI Physical Design
Automation. 3rd. Ed., Kluwer Academic Publishers.

	 Tsung-Ying Sun, Sheng-Ta Hsieh,Hsiang-Min Wang
and Cheng-Wei Lin (2006) Floorplanning Based on
Particle Swarm Optimization. IEEE Computer Society
Annual Symposium on Emerging VLSI Technologies
and Architectures (ISVLSI'06) IEEE Xplore 6 March
2006 ISBN:0-7695-2533-4.

	Y ifan Weng, Zhen Chen, Jianli Chen, Wenxing Zhu
(2019) A Modified Multi-objective Simulated Annealing
Algorithm for Fixed-outline Floor-planning. IEEE
International Conference on Automation Electronics
and Electrical Engineering Electronic ISBN: 978-1-
5386- 7861-9.

	Z henyi Chen, Gaofeng Wang, Chen Dong (2012) Hybrid
Particle Swarm Optimization Algorithm for Fixed-
outline Floorplanning. International Conference on
Computer Science and Network Technology IEEE Xplore
12 April 2012 Electronic ISBN: 978-1-4577-1587-7
Pages 1299 – 1302.

121

Desai & Pattanad

