
ABSTRACT
Personalization of e-services demands powerful and flexible preference modeling techniques to cope up with the new
challenges in information retrieval models. This paper presents a historical review of major milestones in development of
various preference based information retrieval models over time covering topics like Pareto preference, Skyline operator,
Best Match Only(BMO) query model, Top-k query model, Preference SQL, etc. by constructive analysis through summary
and comparison along with merits and drawbacks as applicable for each model. It is concluded by providing practical
utility and benefits of these models and a general relation between them. Lastly, some important open fields of research
in Preference based Information Retrieval area is jotted down.

KEY WORDS: Preference based IR, Skyline operator, Pareto Preference, BMO, Preference SQL.

A Review on Preference Based Information Retrieval Models

Manisha Singh
Shri. Ramdeobaba College of Engineering and
Management, Computer Science, Nagpur, India

169

ARTICLE INFORMATION

*Corresponding Author: singhmm@rknec.edu
Received 20th Oct 2020 Accepted after revision 30th Dec 2020
Print ISSN: 0974-6455 Online ISSN: 2321-4007 CODEN: BBRCBA

Thomson Reuters ISI Web of Science Clarivate Analytics USA and
Crossref Indexed Journal

NAAS Journal Score 2020 (4.31)
A Society of Science and Nature Publication,
Bhopal India 2020. All rights reserved.
Online Contents Available at: http//www.bbrc.in/
Doi: http://dx.doi.org/10.21786/bbrc/13.14/40

Biosc.Biotech.Res.Comm. Special Issue Vol 13 No 14 (2020) Pp-169-172

INTRODUCTION

Most of the database query models work on “hard
constraint” principle, i.e. one must specify the requirement
in a rather rigid way. If the constraint matches, the result
is displayed or else empty set will come. But then there
is a “real world”! Natural human instinct is to look for
the best match available for our need. But if that is not
possible, people are willing to compromise with other
alternatives available for the same. Consider a scenario
where the user must book a flight or a hotel for a specific
region under a certain price range. After all the work of
setting the explicit filters of distance, cost, brands, etc.
the user notices “flights not found” or “hotels not found”
as an output. The user is then asked to refine his query
or change the filters to see other options. This is quite a
tedious process.

In such scenarios, users will be at ease if the system
instead of working on hard constraints, considers the
query given by the user as a soft constraint or just a
preference. This means considering the query entered
by the user as user’s first preference. If found, then
return the exact match. Else, instead of giving an empty
set, return the other possible options. Now consider the
reverse scenario where the query is not so well formulated
or too generalized. There the user will be flooded with
results which might not even be relevant. These are
the two classical issues, the infamous “empty set” and
“flooding effect” which researchers are trying to solve
using preference based information retrieval models to
make the system more flexible and efficient to handle
real world human behavior.

Many studies and researches have been carried out
in the area of preference based information retrieval
since decades. This paper tries to outline some of the
important aspects and milestones of these studies ranging
from 1987 to as recent as possible. Section 2 covers the
discussion on 4 different research papers which have
proposed different models for preference based query
construction and evaluation. Section 2.1 talks about the
research paper “Preferences: Putting More Knowledge
into Queries”[Lacroix, 1987] which is based on preference
clause PREFER. Section 2.2 talks about research paper

Singh

170

“The Skyline Operator”[Borzsony, 2001] based on a very
practical requirement of getting the result based on
multiple contradicting preferences. Section 2.3 covers
the discussion on the research paper “Foundations of
Preferences in Database Systems”[Kießling, 2002] which
has proved to be one of the most significant research
in the field of preference models. And last but not the
least, section 2.4 discusses about the research paper “The
Preference SQL System – An Overview”[Kießling, 2011]
which is an extension to SQL and a practical working
model with good query optimization techniques. Section
3 covers conclusion as a comparative study of these
discussed models.

2. Preference Models
2.1 Preferences: Putting More Knowledge into Queries:
The model given by M. Lacroix and P. Lavency in 1987
is one of the earliest approaches to model preferences
in classical (relational) databases [Lacroix, 1987]. It
proposes a preference mechanism which is presented as
an extension of a language of the Domain Relational
Calculus family (DRC) by adding a preference clause
PREFER in the existing traditional query language
[Lacroix, 1987]. It first evaluates the result without the
preference clause. Then it applies the preference clause
on the result obtained by previous evaluation. If after
applying the preference clause the result set turns to be
empty, the preference clause is treated as void. Else, in
best case it reduces the cardinality of the result to the
most preferred options by the user thus trying to handle
both the issues of “empty set” and “flooding effect”.

2.1.1 Simple preference clauses
SELECT houses HAVING status = “built complete”
FROM WHICH PREFER THOSE
HAVING roomsize = “2BHK”

Consider a scenario where a new house is to be found
to move in. The above query will first select the houses
whose construction is completed. And then it will check
among those houses which have 2BHK and return the
new reduced cardinality result set if applicable, else in
case of empty set, it will not restrict it to 2BHK..

2.1.2 Compound preference clauses (multiple
preferences)
Nested preferences: This is considered as a multi level
preference. First preference clause being the highest
priority, then on that evaluated result, apply next filter
of second preference clause as next priority and so on.
For relative importance preferences, repeat the “from
which” clause. The result is unrestricted by the preference
clause if it is not found on given data set or it makes
the result set empty at any stage. The priority is decided
as the order in which the preference clauses including
“from which” is written.

Equally important preferences: This is similar to the
nested preferences except that here all the preference
clauses are of same priority. Its functioning is more like
“OR” operation. For equally important preferences, repeat
the “prefer those” clause.

In case of very large programs one may need the same
qualification of preference for different modules which
can result in a lot of repetition. This can be avoided
using second order constructs provided by this model.
Other approaches [C.L. Chang, 1976] have been proposed
before to handle preferences but it works on numerical
metadata and calculates distance, etc. to find best match.
This numerical data is not always available. Also, how
that numerical value is assigned plays a very important
role in query evaluation and can dominate the result.
This issue is resolved in Lacroix’s and Lavency’s model
as they do not rely on numerical metadata. Though this
model provides a good insight and approach in dealing
with the preferences, but the fact that preference clause
is integrated in Domain Relational Calculus (DRC) makes
it less efficient because DRC queries are combinational
functions over the preferences which make it very
complex. Also, in case of complex compound queries
the time complexity increases as it doesn’t deal with any
optimization techniques in proposed approach.

2.2 The Skyline Operator: This model was given by
Börzsönyi, Kossmann and Stocker in 2001. It is based
on practical real time issue of contrasting preferences.
The Skyline is defined as those points which are not
dominated by any other point. A point dominates
another point if it is as good or better in all dimensions
and better in at least one dimension [Borzsony, 2001].
This type of dominance is called Pareto Dominance.
Let’s take the example given in paper [Borzsony, 2001]
where a person needs to travel to Nassau (Bahamas)
and is looking for cheap hotels near the beach. These
two are contrasting preferences as hotels near beaches
are comparatively costly. The Skyline operator will try
to filter out interesting hotels from potentially large set
of hotels in Nassau by applying filter of min(cost) and
min(distance) from beach. The skyline query constructor
extends the SQL’s SELECT statement by optional SKYLINE
OF clause as follows:

Figure 1: Skyline of hotels

SELECT ... FROM ... WHERE ...
GROUP BY ... HAVING ...
SKYLINE OF [distinct] d1 [min | max | diff]…… dm [min
| max | diff]….. ORDER BY ...

An advantage of this approach is that only simple
modifications to parser and query optimizer is
required making integration of the Skyline operator
into a traditional SQL query processor extremely

Singh

 171

simple. Important skyline implementation factor is the
transitivity of dominance i.e. if p dominates q and q
dominates r, then p also dominates r. One-dimensional
Skyline is equivalent to a min, max, or distinct SQL query
without a SKYLINE OF clause and can be done easily with
the help of sorting. But simple sorting doesn’t work on
two-dimensional or multi-dimensional skylines. It needs
special algorithms for that.

2.3 Foundations of Preferences in Database Systems: This
preference model was proposed by Werner Kießling in
2003 [Kießling, 2002]. It works on the principle of strict
partial order. It considers preference in terms of “better
than” perspective, mathematically which can directly be
mapped as strict partial order. Strict partial order can be
represented as:

Preference P = (A, <P) on dom(A)
“x <P y” is interpreted as “I like y better than x”

Among all other models available, it can be said that
this model is one of the most rich, simple and flexible
model semantically. It has proved to be a milestone in
building of personalized applications. The preference
constructor here covers a wide range with many different
criteria as follows:

2.3.1 Base preference constructors

Non-numerical:
POS preference: POS(A, POS-set) : preference given to
elements mentioned in POS set.
NEG preference: NEG(A, NEG-set) : don’t prefer the
elements of NEG set unless the result set is turning
empty.
POS/NEG preference: POS/NEG(A, POS-set; NEG-set) :
prefer POS set elements, try eliminating NEG set
POS/POS preference: POS/POS(A, POS1-set; POS2-set) :
acts as a two level preference
EXPLICIT preference: EXP(A, E-graph) : explicitly specify
the preferred elements/criteria

Numerical:
AROUND preference: AROUND(A, z) : prefer values
around the given value (min difference)
BETWEEN preference: BETWEEN(A, [low, up]) : prefer
values in the given range
LOWEST, HIGHEST preference: LOWEST(A), HIGHEST(A)
: prefer the lowest and highest value in given domain
SCORE preference: SCORE(A, f) : uses a function to
calculate a score, which can later be used in rank
retrieval

If preferred data available, consider that. Else, keep the
result unrestricted to avoid returning empty set.

2.3.2 Complex preference constructors
Pareto preference: P1⊗ P2 : both preference are equally
important.

Prioritized preference: P1 & P2: preference P1 is first
priority followed by preference P2

Numerical preference: rank(P1, P2) : calculate rank based
on score, then return top-n results (only with score)

Apart from these there is also aggregating preference
constructors like intersection, disjoint and union
preferences.

BMO Query Model: The exact match query model
adapted by SQL doesn’t necessarily hold in real world.
Thus, preference works on Best Match Only (BMO)
query model which is a match-making between wishes
and reality. Return perfect matches if they exist, else,
deliver best alternatives, but never worse objects
(effect of discarding non-maximal values on the fly).
In BMO, query relaxation is implicitly applied and the
behavior is always non-monotonous depending on the
quality of data rather than quantity.

Efficiency and optimization issues are not directly
addressed in this paper. But, it does provide a backbone
for optimization approaches like divide-and-conquer
by laying the foundation in the form of decomposition
of Pareto preferences into ‘+’ and ‘♦’, which in turn
can be decomposed further. Merit of this model holds
on Pareto accumulation that gives user the best-match
automatically without any overload of explicit query
refinement.

2.4 The Preference SQL System: This preference model
was proposed by Endres, Kießling, & Wenzel in 2011
[Kießling, 2011]. Preference SQL is a declarative extension
of standard SQL by strict partial order preferences,
behaving like soft constraints under the BMO query
model, discussed in previous model. By default,
Preference SQL has implicit SV-Semantics but it is still
under development and enhancement (as of 2019). The
preference constructor here is derived from previous
model with an addition of more advanced functionalities.
The schematic query structure of Preference SQL is as
follows:

SELECT … <selection>
FROM … <table_references>
WHERE … <hard_conditions>
PREFERRING … <soft_conditions>
GROUPING … <attribute_list>
TOP … <k>
BUT ONLY … <but_only_condition>
GROUP BY … <attribute_list>
HAVING … <hard_conditions>
ORDER BY … <attribute_list>
LIMIT … <n>

Statements select, from, where, group by, having, and
order by are the standard SQL keywords. Along with that,
special preference based keywords are integrated into it.
The evaluation order first groups Preference Selection
then Top-k Interface. Here But Only is a hard selection
(after-filter) which helps in reducing the novel “flooding
effect”. HAVING is a hard selection too for groups using
grouping attributes or aggregate functions.

Singh

172

The PreferenceSQL prototype is based on a Java-
Middleware (JDBC) containing PSQL-JDBC-Driver
(Server) and Preference SQL (Parser, Optimizer,
Algorithms). It is a declarative extension of SQL by
preferences. The preference query optimizer performs
algebraic transformations of preference relational algebra
as well as cost-based algorithm selection e.g. Hexagon
algorithm for efficient Pareto / skyline [Kießling, 2007].
As PreferenceSQL system lies only on the server, it
becomes easily maintainable and simple extension of
PreferenceSQL without changing the standard SQL
component of database systems along with no updates of
the clients as it is in the form of JDBC middleware. But
it does face higher runtime or even worse performance
issues as more time is needed for computations based
on middleware. More efficient algorithms and join
approaches are needed for overcoming this issue.

The model given by Kießling [Kießling, 2002] is one of the
richest models which have laid a foundation for various
implementations based on preference based information
retrieval. The PreferenceSQL is an empirical adaption of
Kießling’s model. The well known implementations of
Endres’s models are Preference SQL, an implementation
based on MS SQL Server, PostgreSQL and EXASolution.
Though many studies and researches have been going
on in the field of Preference based information retrieval,
but it still lags behind compared to exact match standard
SQL models. The current day-to-day applications having
exact match query model as base can be attempted based
on preference based information retrieval for efficiency
and least repetitive query refinement from user’s end. A
very crucial open area of research in this domain includes
optimization techniques for complex preferences.

References
	 Borzsony, Kossmann, & Stocker. “The Skyline operator”,

in proceedings 17th International Conference on Data
Engineering, Heidelberg, Germany, 2001.

	C . L. Chang. “The Deduce - A deductive query language
for relational data base”, Pattern Recognition and
Artificial Intelligence, Academic Press, 1976.

	E der, Wei. “Evaluation of skyline algorithms in
PostgreSQL”, in Proceedings of the 2009 International
Database Engineering & Applications Symposium on –
IDEA, 2009.

	K ießling, Endres, Wenzel . “The PreferenceSQL System
- An Overview”, in IEEE Computer Society Technical
Committee on Data Engineering, 2011.

	K ießling, Kostler. “Preference SQL - Design,
Implementation, Experiences”, in VLDB’02: Proceedings
of the 28th International Conference on Very Large
Database, 2001.

	K ießling, Preisinger. “The Hexagon Algorithm for Pareto
Preference Queries”, in VLDB, Vienna, Austria, 2007.

	K ießling. “Foundations of Preferences in Database
Systems”, in proceedings of the 28th International
Conference on Very Large Databases, Hong Kong, China,
2002.

	 Lacroix and Lavency. “Preferences: Putting More
Knowledge Into Queries”, in proceedings of the 13th
VLDB Conference, Brighton, 1987.

	 Rahangdale, Agrawal. “Information Extraction Using
Discourse Analysis from Newswires”, International
Journal of Information Technology Convergence and
services (IJITCS), 2014.

Figure 2: System architecture of Preference SQL

Conclusion

This paper presents an overview of the key models
for preference based information retrieval along with
merits and areas of improvement as applicable for
each. All the discussed models are built up on SQL,
letting integration with standard database query model
possible. Pareto preference has played a major role in all
4 discussed models. Apart from that, Lacroix & Lavency’s
model incorporates prior preference, the skyline model
includes skyline preference and both rearmost models
encompasses prior and basis preferences. Lacroix &
Lavency’s model is not as efficient and user friendly as
the latter three models. In terms of practical usage, the
skyline model and the Preference SQL have a strong
utilization aspect. BNL-style algorithm is used in Lacroix
& Lavency’s model. The latter 3 models cover different
algorithms like BNL, SFS, SaLSa, LESS, Scalagon, etc. The
Lacroix & Lavency’s model was only a prolog (prototype)
whereas the skyline model has an implementation model
built on PostgreSQL.

