

Biosc.Biotech.Res.Comm. Vol 13 (2) April-May-June 2020 Pp-401-409

# **Evaluation of Anti-HIV Activity of Selected Medicinal Plants: A Short Review**

Raghavi R<sup>1</sup>, Keren Deborah S<sup>1</sup>, Jerrine Joseph<sup>2\*</sup> and Wilson Aruni<sup>2,3,4</sup> <sup>1,2</sup>Centre for Drug Discovery and Development, Sathyabama Institute for Science and Technology (Deemed to be University) Chennai 600119, India <sup>3</sup>School of Medicine, Loma Linda University CA, USA. <sup>4</sup>Musculoskeletal Disease Research Laboratory, US Department of Veteran Affairs, Loma Linda CA, USA.

### ABSTRACT

Human immunodeficiency virus (HIV) causes the potentially life-threatening and chronic disease called acquired immune deficiency syndrome (AIDS). The main target of this viral disease is to suppress the immune system and make the body unresponsive to external stimuli. According to global health observatory data since epidemic, more than 78 million people were affected by HIV and 39 million people died globally. There were approximately 37.9 million people living with HIV at the end of 2018. Currently, antiretroviral therapy (ART) is available for the control of HIV but has serious associated side effects such as lipodystrophy. Because of the limitations, associated with ART, researchers throughout the world are trying to explore and develop more reliable and safe drugs from natural resources to manage HIV infection. A wide range of medicinal plants have been studied and have reported significant potential against HIV. Medicinal plants contain novel anti-HIV compounds. As it has been well reported that medicinal plants contain various types of phytochemical constituents including alkaloids, flavonoids, phenolic compounds, glycosides, tannins, and saponins, hence the medicinal plants could be potential sources of boosting immune responses, as well as halting the replication of HIV. A literature survey of medicinal plants from PubMed and plant literature database, was carried out to identify the plants with novel antiviral agents reported for the treatment of HIV/AIDS worldwide. Bioactive compounds from plants which play effective roles in the management of AIDS, which have been discussed in this review study. This could pave way for being taken up for active future in vitro and preclinical research studies to qualify as lead anti HIV molecules which is the need of the hour.

KEY WORDS: AIDS, ANTIRETROVIRAL THERAPY, PHYTOCONSTITUENTS, MEDICINAL PLANTS.

Article Information: \*Corresponding Author: *jerrine.jj@gmail.com* Received 15/04/2020 Accepted after revision 15/06/2020 Published: 30th June 2020 Pp-401-409 This is an open access article under Creative Commons License,. Published by Society for Science & Nature, Bhopal India. Available at: https://bbrc.in/ Article DOI: http://dx.doi.org/10.21786/bbrc/13.2/07



## **INTRODUCTION**

HIV continues to be a major global public health issue, having claimed more than 32 million lives so far. However, with increasing access to effective HIV prevention, diagnosis, treatment and care, including for opportunistic infections, HIV infection has become a manageable chronic health condition, enabling people living with HIV to lead long and healthy lives. There were approximately 37.9 million people living with HIV at the end of 2018. As a result of concerted international efforts to respond to HIV, coverage of services has been steadily increasing. In 2018, 62% of adults and 54% of children living with HIV in low- and middleincome countries were receiving lifelong antiretroviral therapy (ART).(WHO 2019). HIV is a retrovirus that can integrate its DNA into the host genome. The virus enters the host cell and affects the immune system mainly T lymphocytes, monocytes, macrophages and dendritic cells (Salehi et al,.2018).

Its genetic material RNA is made up of nine genes which contain all the instructions to make new viruses. Three of these genes - gag, pol and env - provide the instructions to make proteins that will form new virus particles. The other six genes rev, nef, vif, vpr and vpu, provide code to make proteins that control the ability of HIV to infect a cell, produce new copies of virus or release viruses from infected cells. The HIV-1 binds to the chemokine receptor 5 or the CXC chemokine receptor 4 by interacting with the envelope proteins to gain entry to the host cell (Salehi et al, 2018). Therapies are now available to inhibit various stages of viral infection such as entry inhibitors, reverse transcriptase inhibitors, integrase strand transfer inhibitors and protease inhibitors.Presence of antibody to HIV proteins is well accepted as indicative of HIV infection. Sometimes certain clinical conditions may also result in the presence of false-positive HIV antibody. Serologic tests for HIV includes ELISA, Western blot and HIV p24 antigen assay.

#### **Types and Symptoms**

**1. Primary infection (Acute HIV):** Some people infected by HIV develop a flu-like illness within two to four weeks after the virus enters the body. This illness, known as primary (acute) HIV infection, may last for a few weeks. Possible signs and symptoms include fever, headache, muscle aches and joint pain, rash, sore throat and painful mouth sores, swollen lymph glands, mainly on the neck, diarrhoea, weight loss, cough, night sweats. As the infection progressively weakens the immune system, they can develop other signs and symptoms, such as swollen lymph nodes, weight loss, fever, diarrhoea and cough. Without treatment, they could also develop severe illnesses such as tuberculosis (TB), cryptococcal meningitis, severe bacterial infections, and cancers such as lymphomas and Kaposi's sarcoma (WHO 2019).

**2. Clinical latent infection (Chronic HIV):** In this stage of infection, HIV is still present in the body and in white blood cells. However, many people may not have any symptoms or infections during this time.

Treatment: Despite challenges, new global efforts have meant that the number of people receiving HIV treatment has increased dramatically in recent years, particularly in resource-poor countries. In 2018, 62% of all people living with HIV were accessing treatment. Of those, 53% were virally suppressed. This equates to 23.3 million people living with HIV receiving antiretroviral treatment (ART) in 2018 – up from 7.7 million in 2010. However, this level of treatment scale up is still not enough for the world to meet its global target of 30 million people on treatment by 2020 (WHO 2019). Significant progress has been made in the prevention of mother-to-child transmission of HIV (PMTCT). In 2018, 82% of all pregnant women living with HIV had access to treatment to prevent HIV transmission to their babies - an increase of more than 90% from 2010.

Antiretroviral Therapy: The combination of drugs used to treat HIV is called antiretroviral therapy antiretroviral therapy (ART). ART is recommended for all people living with HIV, regardless of how long they've had the virus or how healthy they are. More than two dozen antiretroviral drugs has been approved by FDA to treat HIV infection. Different classes of antiretroviral drugs act at different stages of the HIV life cycle. Two nucleoside reverse transcriptase inhibitors (NRTIs; abacavir with lamivudine or tenofovir disoproxil fumarate with emtricitabine) and an integrase strand transfer inhibitor, such as dolutegravir, elvitegravir, or raltegravir; a nonnucleoside reverse transcriptase inhibitor (efavirenz or rilpivirine) or a boosted protease inhibitor (darunavir or atazanavir) are rcommended for initial regimens (Günthard et al., 2014).

Fostemsavir (entry inhibitor via gp120) and PR0140 (CCR5 monoclonal antibody) are the two additional viral entry inhibitors with novel mechanisms of action that are currently in phase 2 trials (Gravatt et al., 2017). A phase 3 study is currently ongoing (NCT02362503) to determine if fostemsavir is an effective treatment for patients with multidrug-resistant HIV. PR0140 (CytoDyn) is a humanized CCR5 monoclonal antibody with antiviral activity against CCR5-tropic HIV. Based on new evidence assessing benefits and risks, the WHO recommends the use of the HIV drug dolutegravir (DTG) as the preferred first-line and second-line treatment for all populations, including pregnant women and those of childbearing potential (WHO 2019).

Antiretroviral drugs for HIV infection has been classified into the following categories: Multi-class Combination Products, Nucleoside Reverse Transcriptase Inhibitors (NRTIs), Nonnucleoside Reverse Transcriptase Inhibitors (NNRTIs), Protease Inhibitors (PIs), Fusion Inhibitors, Entry Inhibitors–CCR5 co-receptor antagonist and HIV integrase strand transfer inhibitors.

**Herbal Medicine In The Treatment Of HIV/AIDS:** The use of herbal medicine is increasingly becoming more popular in many countries (Sabde et al., 2011). This practice has continued to be a main source of health care in the rural communities especially in developing

countries, since modern medicine has not been able to reach the majority of the populace. In Africa, traditional herbal medicines are often used as primary treatment for HIV/ AIDS and for HIV-related problems including dermatological disorders, nausea, depression, insomnia and weakness. In North America, commonly used herbal dietary supplements have been found to impede on ARV drug effectiveness. Specifically, garlic supplements (Allium sativum) and St John's Wort (Hypericum perforatum) have been shown to have detrimental effects on the plasma concentrations of saquinavir and indinavir (Piscitelli et al., 2002).

Plants, produce numerous secondary metabolites as evolutionary responses to infections by fungi, nematodes, and other organisms, to avoid herbivory, and to complete for light and space, such as phenolics, glycosides, alkaloids, coumarins, terpenoids, essential oils and peptides. These metabolites have been identified with different biological activities. Some of them play an important role in immune system enhancement, exhibiting antiviral potential, including viral infections associated with Human Immunodeficiency Virus type 1 (HIV-1) and 2 (HIV-2) as genetic variabilities. An increasing number of patients with HIV infection cannot use the currently approved anti-HIV drugs including the reverse transcriptase and protease inhibitors, due to the adverse reactions, particularly liver diseases, that have been reported for antiretroviral drugs.

Some Chinese herbal preparation which consists of 14 plants (*Coptis chinensis, Jasminum officinale, Wolfiporia extensa, Sparganium stoloniferum, Polygonatum odoratum,* and *Scrophularia buergeriana* was investigated during 24 weeks and observed to have increased plasma CD4 count and also showed inhibition of HIV growth.

| Table 1 | Table 1a. Plants with proven anti-HIV activity |                     |                |                      |                                                                           |  |  |
|---------|------------------------------------------------|---------------------|----------------|----------------------|---------------------------------------------------------------------------|--|--|
| S. no   | Plant Name                                     | Part of the Plant   | Family         | Assay                | Reference                                                                 |  |  |
| 1       | Aegle<br>marmelos                              | Leaves<br>Fruits    | Rutaceae       | p24 antigen<br>assay | Sudeep Sabde,<br>Hardik S. Bodiwala,<br>Aniket Karmase<br>et al., 2011    |  |  |
| 2       | Adhatoda vasica                                | Leaves              | Acanthaceae    | p24 antigen assay    | Sudeep Sabde,<br>Hardik S. Bodiwala,<br>Aniket Karmase<br>et al., 2011    |  |  |
| 3       | Allium sativum                                 | Bulbs               | Amaryllidaceae | p24 antigen assay    | Sudeep Sabde, Hardik<br>S. Bodiwala,<br>Aniket Karmase<br>et al., 2011    |  |  |
| 4       | Alstonia scholaris                             | Stem bark<br>Leaves | Apocynaceae    | p24 antigen assay    | Sudeep Sabde,<br>Hardik S. Bodiwala,<br>Aniket Karmase<br>et al., 2011    |  |  |
| 5       | Argemone mexicana                              | Leaves              | Papaveraceae   | p24 antigen assay    | Sudeep Sabde,<br>Hardik S. Bodiwala,<br>Aniket Karmase<br>et al., 2011    |  |  |
| 6       | Asparagus<br>racemosus                         | Roots               | Asparagaceae   | p24 antigen assay    | Sudeep Sabde,<br>Hardik S. Bodiwala,<br>Aniket Karmase<br>et al., 2011    |  |  |
| 7       | Aconitum<br>kusnezoffii                        | Aerial              | Ranunculaceae  | MT-4 cell Assay      | L M Bedoya, S Sanchez-<br>Palomino, M J Abad<br>et al., 2001              |  |  |
| 8       | Anemarrhena<br>asphodeloides                   | Rhizoma             | Liliaceae      | MT-4 cell Assay      | Bahare Salehi,<br>Nanjangud V. Anil<br>Kumar, Bilge Sener<br>et al., 2015 |  |  |
| 9       | Angelica sinensis                              | Root                | Umbelliferae   | MT-4 cell Assay      | Carolyn Williams-<br>Orlando., 2017                                       |  |  |

## Raghavi R et al.,

Continue Table 1

| 10 | Artemisia caruifolia | Whole plant      | Asteraceae      | MT-4 cell Assay       | Chao-Mei MA,              |
|----|----------------------|------------------|-----------------|-----------------------|---------------------------|
|    |                      |                  |                 |                       | Norio Nakamura,           |
|    |                      |                  |                 |                       | Masao Hattori., 2001      |
| 11 | Andrographis         | Leaves           | Acanthaceae     | MT-4 cell Assay       | Mayur M Uttekar,          |
|    | Paniculata           |                  |                 | 5                     | Tiyasa Das, Rohan         |
|    |                      |                  |                 |                       | S Pawar et al., 2012      |
| 12 | Azadirachta indica   | Leaves           | Meliaceae       | Syncytium             | David, Pedroza-Escobar    |
|    |                      |                  |                 | reduction assay,      | Benjamín, Serrano-        |
|    |                      |                  |                 | ELISA, Anti-HIV-1 RT  | Gallardo Luis             |
|    |                      |                  |                 | inhibitory activity   | Delia et al., 2017        |
| 13 | Areca Catechu        | Seed             | Piperaceae      | -                     | Senthil Amudhan, V        |
|    |                      |                  |                 |                       | Hazeena Begum,            |
|    |                      |                  |                 |                       | K. B. Hebba, 2019         |
| 14 | Alchornea laxiflora  | Leaf, root, stem | Euphorbiaceae   | HIV-1 Integrase       | fD.Mnkandhla,             |
|    |                      |                  |                 | inhibitory activity,  | M Issacs, F.M.            |
|    |                      |                  |                 | Cytotoxicity activity | Muganza et al., 2019      |
| 15 | Butea monosperma     | Roots            | Leguminosae     | p24 antigen assay     | Sudeep Sabde, Hardik      |
|    |                      | Stem Bark        |                 |                       | S. Bodiwala, Aniket       |
|    |                      |                  |                 |                       | Karmase et al., 2011      |
| 16 | Betula pubescens     | Bark             | Betulaceae      | anti-HIV-1            | Prapaporn Chaniad ,       |
|    |                      |                  |                 | integrase assay       | Teeratad Sudsai, Abdi     |
|    |                      |                  |                 |                       | Wira Septama et al., 2019 |
| 17 | Cassia occidentalis  | Leaves           | Fabaceae        | p24 antigen assay     | Sudeep Sabde,             |
|    |                      |                  |                 |                       | Hardik S. Bodiwala,       |
|    |                      |                  |                 |                       | Aniket Karmase            |
|    |                      |                  |                 |                       | et al., 2011              |
| 18 | Catharanthus roseus  | Leaves           | Apocynaceae     | p24 antigen assay     | Sudeep Sabde, Hardik      |
|    |                      |                  |                 |                       | S. Bodiwala, Aniket       |
|    |                      |                  |                 |                       | Karmase et al., 2011      |
| 19 | Cissampleos parriera | Aerial part      | Menispermaceae  | p24 antigen assay     | Sudeep Sabde, Hardik      |
|    |                      |                  |                 |                       | S. Bodiwala, Aniket       |
|    |                      |                  |                 |                       | Karmase et al., 2011      |
| 20 | Colchicum luteum     | Bulbs            | Colchicaceae    | p24 antigen assay     | Sudeep Sabde, Hardik      |
|    |                      |                  |                 |                       | S. Bodiwala, Aniket       |
|    |                      |                  |                 |                       | Karmase et al., 2011      |
| 21 | Coleus forskohlii    | Aerial part      | Lamiaceae       | p24 antigen assay     | Sudeep Sabde, Hardik      |
|    |                      |                  |                 |                       | S. Bodiwala, Aniket       |
|    |                      | 1                |                 | 11117 1               | Karmase et al., 2011      |
| 22 | Cryptocarya          | Wood             | Lauraceae       | HIV growth            | lian-Shung Wu,            |
|    | chinensis            |                  |                 | inhibition assay      | Chung-Ken Su, Kuo-        |
| 22 | Cassinium            | Ctore hards      | Maniananna agas | Tutorus ou d          | Hsiung Lee, 2012          |
| 23 | Coccinium            | Stem bark        | Menispermaceae  | Integrase and         | J.J. Magadulal,           |
|    | jenestratum          |                  |                 | riotease innibitor    |                           |
| 24 | Calonhullum          | Dork             | Guttiforaa      | DT Inhibition accou   | 2010                      |
| 24 | inophyllum           | DdIK             | Guturelae       | KT IIIIIDIUUII assay  | H O Suleimon 2010         |
| 25 | Cinnamomun           | Barb             | Lauraceae       | MT-4 cell Assau       | Franklin Nyenty Tabe      |
| 20 | aromiticum           | Daix             | Lauraceae       | MIT-4 CCII ASSAY      | Nicolas Yanou Niintand    |
|    | aromnucam            |                  |                 |                       | Armel Hervé Nwaho         |
|    |                      |                  |                 |                       | Kamdie et al 2015         |
| 26 | Cynanchum            | Root             | Ascleniadaceae  | MT-4 cell Assav       | Jian Tao Jino             |
| 20 | chinense             |                  | isciepiauaceae  | wii i celi 135ay      | Yang Chaovin              |
|    | CHINCHOL             |                  |                 |                       | Chen et al 2011           |
| 27 | Cynomorium           | Stem             | Cynomoriaceae   | MT-4 cell Assav       | Suvdmaa Tuvaaniav.        |
|    | sonaaricum           | - Citin          | -J nomoraccac   |                       | Han Shugin. Masashi       |
|    |                      |                  |                 |                       | Komata et al., 2016       |
|    |                      |                  |                 |                       |                           |

Continue Table 1

| 0.0 |                          |             |                |                        |                           |
|-----|--------------------------|-------------|----------------|------------------------|---------------------------|
| 28  | Dracocephalum rupestre   | Whole plant | Labiatae       | MT-4 cell Assay        | Qi Zeng, Hui-Zi Jin,      |
|     |                          |             |                |                        | Jiang-Jiang Qin           |
|     |                          |             |                |                        | et al., 2010              |
| 29  | Dryopteris crassirhizoma | -           | Aspidiaceae    | MT-4 cell Assay        | Ji Suk Lee, Hirotsugu     |
|     |                          |             |                |                        | Miyashiro, Norio          |
|     |                          |             |                |                        | Nakamura et al., 2008     |
| 30  | Embelica ribes           | Fruits      | Primulaceae    | p24 antigen assay      | Sudeep Sabde, Hardik      |
|     |                          |             |                |                        | S. Bodiwala, Aniket       |
|     |                          |             |                |                        | Karmase et al., 2011      |
| 31  | Embellica officinalis    | Fruits      | Phyllanthaceae | p24 antigen assay      | Sudeep Sabde, Hardik      |
|     |                          |             |                |                        | S. Bodiwala, Aniket       |
|     |                          |             |                |                        | Karmase et al., 2011      |
| 32  | Erodium stephanianum     | Whole plant | Geraniaceae    | MT-4 cell Assay        | Chao-mei Ma,              |
|     |                          |             |                |                        | Norio Nakamura,           |
|     |                          |             |                |                        | Hirotsugu Miyashiro, 2002 |
| 33  | Eugenia jambolona        | Bark        | Myrtaceae      | -                      | Richa Sood, D Swarup,     |
|     |                          |             |                |                        | S Bhatia, D D Kulkarni    |
|     |                          |             |                |                        | et al., 2012              |
| 34  | Garcinia indica          | Leaves      | Clusiaceae     | MT-4 cell Assay        | J.J. Magadulai,           |
|     |                          |             |                |                        | H.O. Suleiman., 2010      |
| 35  | Garcinia cambogia        | Leaves      | Clusiaceae     | Integrase and Protease | J.J. Magadulai,           |
|     |                          |             |                | Inhibitor assay        | H.O. Suleiman., 2010      |
|     |                          | 1           | 1              |                        |                           |

| Table 1b. Plants with proven anti-HIV activity |                        |                   |              |                                 |                                                                                        |  |  |
|------------------------------------------------|------------------------|-------------------|--------------|---------------------------------|----------------------------------------------------------------------------------------|--|--|
| S. no                                          | Plant Name             | Part of the Plant | Family       | Assay                           | Reference                                                                              |  |  |
| 1                                              | Gentiana scabra        | Root              | Centianaceae | MT-4 cell Assay                 | Bahare Salehi, Nv Anil,<br>Bilge Sener et al., 2018                                    |  |  |
| 2                                              | Gossampinus malabarica | Flower            | Bombacaeae   | MT-4 cell Assay                 | J A Wu, A S<br>Attele, L Zhang<br>et al., 2001                                         |  |  |
| 3                                              | Gymnadenia conopsea    | Root              | Orchidaceae  | MT-4 cell Assay                 | Xiaofei Shang, Xiao<br>Guo,Yu Liu<br>et al., 2017                                      |  |  |
| 4                                              | Glycyrrhiza glabra     | Glcyrrhyrine      | Fabaceae     | OKM-1, MT-4 cells               | Cristina Fiore,<br>Michael Eisenhut,<br>Rea Krausse et al., 2008                       |  |  |
| 5                                              | Glycyrrhiza glabra     | Roots             | Fabaceae     | p24 antigen assay               | Sudeep Sabde, Hardik<br>S. Bodiwala, Aniket<br>Karmase et al., 2011                    |  |  |
| 6                                              | Gentiana scabra        | Root              | Centianaceae | MT-4 cell Assay                 | Bahare Salehi,<br>Nv Anil, Bilge<br>Sener et al., 2018                                 |  |  |
| 7                                              | Lygodium japonicum     | Spore             | Schizaeaceae | MT-4 cell Assay                 | Xavier-ravi Baskaran,<br>Antony-varuvel Geo<br>Vigila, Shou-zhou<br>Zhang et al., 2018 |  |  |
| 8                                              | Madhuca indica         | Bark              | Sapotaceae   | p24 antigen assay               | Sudeep Sabde, Hardik<br>S. Bodiwala, Aniket<br>Karmase et al., 2011                    |  |  |
| 9                                              | Morinda citrifolia     | Leaves            | Rubiaceae    | MT-4 cell Assay                 | P. Selvam, N. Murugesh,<br>M. Witvrouw et al., 2009                                    |  |  |
| 10                                             | Moringa oleifera       | Leaves            | Moringaceae  | Vector based<br>antiviral assay | Nworu CS, Ezeifeka<br>GO, Ebele Okoye<br>et al., 2013                                  |  |  |

Continue Table 1b

| 11 | Myrianthus holstii       | Root                                  | Urticaceae        | Synctia Formation assay                | Michael J. Currens,                              |
|----|--------------------------|---------------------------------------|-------------------|----------------------------------------|--------------------------------------------------|
|    |                          |                                       |                   |                                        | Lewis K. Pannell, and                            |
|    |                          |                                       |                   |                                        | Michael R. Boyd                                  |
|    |                          |                                       |                   |                                        | et al., 2000                                     |
| 12 | Ocimum sanctum           | Leaves                                | Lamiaceae         | RT Inhibition assay,                   | Kun Silprasit, Supaporn                          |
|    |                          |                                       |                   | Gp120 Binding                          | Seetaha, Parinya                                 |
|    |                          |                                       |                   | Inhibition assay                       | Pongsanarakul                                    |
|    |                          |                                       |                   | 5                                      | et al., 2011                                     |
| 13 | Oldenlandia diffusa      | Whole plant                           | Rubiaceae         | MT-4 cell Assay                        | Bahare Salehi,                                   |
|    |                          |                                       |                   |                                        | Nanjangud V.                                     |
|    |                          |                                       |                   |                                        | Kumar, Anil                                      |
|    |                          |                                       |                   |                                        | Bilge Sener et al., 2018                         |
| 14 | Polvaonum divaricatum    | Whole plant                           | Polygonaceae      | MT-4 cell Assav                        | Yu Zhong, Yoshiyuki                              |
|    |                          | · · · · · · · · · · · · · · · · · · · |                   |                                        | Yoshinaka, Tadahiro                              |
|    |                          |                                       |                   |                                        | Takeda et al., 2005                              |
| 15 | Panaver somniferum       | Seeds                                 | Panaveraceae      | n24 antigen assav                      | Sudeen Sabde Hardik                              |
| 15 | i uput ci sonnigerum     | Decub                                 | rupuveruceue      | p21 anagen assay                       | S Bodiwala Aniket                                |
|    |                          |                                       |                   |                                        | Karmase et al. 2011                              |
| 16 | Piner longum             | Fruit                                 | Pineraceae        | n24 antigen assay                      | Sudeen Sabde Hardik                              |
| 10 | i iper iongum            | Truit                                 | riperaceae        | p21 untigen ussuy                      | S Rodiwala Aniket                                |
|    |                          |                                       |                   |                                        | Karmase et al. 2011                              |
| 17 | Phyllanthus amarus Schum | Leaves                                | Phyllonthoceoe    | RT accav                               | E Notka G R Meier                                |
| 17 | 1 nyuuninus umurus Schum | Leaves                                | 1 Ilynanulaceae   | KI dssay                               | Polf Wagner 2002                                 |
| 10 | Phyllanthus emblica      | Enit                                  | Phyllonthoceoe    | n24 production                         | M Estari I Venkanna                              |
| 10 | r nytianinus Emotica     | riuit                                 | r fiyfiantfiaceae | p24 production                         | D Sriprivo et al. 2012                           |
| 10 | Polaraonium sidoidos     | Poot                                  | Coroniacono       | dSSdy                                  | D Slipilya Et al., 2012<br>Markus Holfor, Horwig |
| 19 | Felargonium studiues     | KUUL                                  | UCIdIIIdCede      | niv-i-celi                             | Vannanatainar Martha                             |
|    |                          |                                       |                   | attachment assays                      | Sobroider et al. 2014                            |
| 20 | Dubia condifolia         | Dooto                                 | Dubiogooo         | n 14 antigan access                    | Sudaan Sahda Hardik                              |
| 20 | κασια εσταιjona          | KOOIS                                 | KUDIACEAE         | p24 antigen assay                      | S Podiwala Anikot                                |
|    |                          |                                       |                   |                                        | S. DOUIWala, Alliket                             |
| 21 | Dhanoutioum uniflomum    | Poot                                  | Compositos        | MT 4 coll Account                      | Loi Li Liu Vuo                                   |
| 21 | Knaponiicum unijiorum    | KOOL                                  | Compositae        | M1-4 Cell Assay                        | Wei Gue 2008                                     |
| 22 | Pubia cordifolia I       | Poot                                  | Pubiacono         | MT 4 coll Accov                        | -Wei Guo, 2006                                   |
| 22 | Kubia Coraijona L        | KUUL                                  | Kublaccac         | MI-4 CEII ASSay                        | Yuonong Cong                                     |
|    |                          |                                       |                   |                                        | Lie V. Ten et al. 2016                           |
| 22 | Pauvolfia corporting     | Pooto                                 | Anogunação        | n21 ontigon accou                      | Sudoon Sabdo, Hardik                             |
| 25 | κααωσημά στηρεπτικά      | KOOIS                                 | Apocynaceae       | p24 antigen assay                      | S Podiwala Anikot                                |
|    |                          |                                       |                   |                                        | Varmasa at al 2011                               |
| 24 | Panavor comniforum       | Sooda                                 | Dopovorogogo      | n21 ontigon accou                      | Sudoon Sabdo, Hardik                             |
| 24 | Tupuver somnijerum       | Secus                                 | Tapaveraceae      | p24 antigen assay                      | S Rodiwala Aniket                                |
|    |                          |                                       |                   |                                        | S. DOUIWala, AIIIKE                              |
| 25 | Dinor longum             | Emit                                  | Dinoragooo        | n 14 antisan accou                     | Kallildst ti al., 2011                           |
| 25 | r iper iongum            | riuit                                 | riperaceae        | p24 antigen assay                      | Suucep Sabue, Haluik                             |
|    |                          |                                       |                   |                                        | S. DOUIWala, AIIIKEt                             |
| 26 | Phullanthus amamus Sohum | Loovoo                                | Dhullonthooooo    | DT access                              | E Nothe C B Major                                |
| 26 | Enymaninus amarus Schum  | Leaves                                | Filynanthaceae    | KT assay                               | r Notka, U K Meter,                              |
| 27 | Salaoja ohlomaa          | Loovos                                | Coloctrocopo      | Intograce and Protosse                 | Kall Wagner, 2003                                |
| 21 | Suluciu obiongu          | Leaves                                | Celastiaceae      | Inhibitor assay                        | H O Suleiman 2010                                |
| 28 | Salvia miltiorrhiza      | Roots                                 | Lamiaceae         | MTT assay Virus                        | Ibrahim S Abd-Flazem                             |
| 20 | Sanna miniormila         | 10010                                 | Lumuccuc          | neutralization assav                   | Hong S Chen, Robert                              |
|    |                          |                                       |                   | ······································ | B Bates et al., 2002                             |
| 29 | Silybum marianum         | -                                     | Asteraceae        | MT-4 cell Assay                        | Ching-Hsuan Liu,                                 |
|    |                          |                                       |                   | -                                      | Alagie Jassey,                                   |
|    |                          |                                       |                   |                                        | Hsin-Ya Hsu et al., 2019                         |
| 30 | Scorzonera glabra        | Root                                  | Compositae        | MT-4 cell Assay                        | Chao-mei Ma, Norio                               |
|    |                          |                                       |                   |                                        | Nakamura, Hirotsugu                              |
|    |                          |                                       |                   |                                        | Miyashiro et al., 2002                           |

| 31 | Scutellaria barbata   | Whole plant | Portulacaceae  | MT-4 cell Assay          | Zi-Long Wang,           |  |
|----|-----------------------|-------------|----------------|--------------------------|-------------------------|--|
|    |                       |             |                |                          | Shuang Wang,            |  |
|    |                       |             |                |                          | Yi Kuang et al., 2018   |  |
| 32 | Stellera chamaejasme  | Root        | Thymelaeaceae  | MT-4 cell Assay          | Min Yan, Yan Lu,        |  |
|    |                       |             |                |                          | Chin-Ho Chen            |  |
|    |                       |             |                |                          | et al., 2015            |  |
| 33 | Stephania cepharantha | Root, Tuber | Menispermaceae | MT-4 cell Assay          | Chao-mei Ma 1, Norio    |  |
|    |                       |             |                |                          | Nakamura, Hirotsugu     |  |
|    |                       |             |                |                          | Miyashiro et al., 2002  |  |
| 34 | Sterculia scaphigera  | Seed        | Sterculiaceae  | MT-4 cell Assay          | Moshera Mohamed El-     |  |
|    |                       |             |                |                          | Sherei, Alia Ragheb,    |  |
|    |                       |             |                |                          | Mona Kassem et al.,2016 |  |
| 35 | Tinospora cordifolia  | Stem bark   | Menispermaceae | p24 antigen assay        | Sudeep Sabde, Hardik    |  |
|    |                       |             |                |                          | S. Bodiwala, Aniket     |  |
|    |                       |             |                |                          | Karmase et al., 2011    |  |
| 36 | Terminalia sericea    | Leaves      | Combretaceae   | MTT assay                | M A Chauke, L J         |  |
|    |                       |             |                |                          | Shai, M A Mogale        |  |
|    |                       |             |                |                          | et al., 2016            |  |
| 37 | Withania somnifera    | Roots       | Solanaceae     | p24 antigen assay, Gp120 | Sudeep Sabde, Hardik    |  |
|    |                       |             |                | Binding Inhibition       | S. Bodiwala, Aniket     |  |
|    |                       |             |                | assay                    | Karmase et al., 2011    |  |
| 38 | Withania somnifera    | Roots       | Solanaceae     | p24 antigen Gp120        | Sudeep Sabde, Hardik    |  |
|    |                       |             |                | assay, Binding           | S. Bodiwala, Aniket     |  |
|    |                       |             |                | Inhibition assay         | Karmase et al., 2011    |  |
|    |                       |             |                |                          |                         |  |

**Cytotoxicity of Anti-HIV Phytochemicals:** Cytotoxic evaluation is very important and integral part of research involving discoveries of new and potent antiviral drugs. A novel formulation with potent antiviral activity have to be proven as not having any toxicity effects and cytotoxicity assays in a suitable cell culture system are only a part of primary step in this direction. For the

purpose of testing, different plants active principals have to be extracted with suitable solvents. The list of commonly used solvents for extraction purpose is summarized in Table 2. Treating cells with these phytochemicals can result in a variety of cell fates. The cells may undergo necrosis, in which they lose membrane integrity.

| Table 2. Solvents used for active components extraction |                |                 |            |                    |             |           |  |  |
|---------------------------------------------------------|----------------|-----------------|------------|--------------------|-------------|-----------|--|--|
| Water                                                   | Ethanol        | Methanol        | Chloroform | Di-chloro methanol | Ether       | Acetone   |  |  |
| Anthocyanins                                            | Tannins        | Anthocyanins    | Terpenoids | Terpenoids         | Alkaloids   | Flavanols |  |  |
| Starches                                                | Polyphenols    | Terpenoids      | Flavonoids |                    | Terpenoids  |           |  |  |
| Tannins                                                 | Polyacetylenes | Saponins        |            |                    | Coumarins   |           |  |  |
| Saponins                                                | Flavanol       | Tannins         |            |                    | Fatty acids |           |  |  |
| Terpenoids                                              | Terpenoids     | Xanthophyllines |            |                    |             |           |  |  |
| Polypeptides                                            | Sterols        | Totarol         |            |                    |             |           |  |  |
|                                                         |                | Lactones        |            |                    |             |           |  |  |

Cytotoxicity can also be monitored using the MTT or MTS assay. This assay measures the reducing potential of the cell using a colorimetric reaction. Viable cells will reduce the MTS reagent to a colored formazan product. Tetrazolium salts are reduced only by metabolically active cells. Thus, 3-(4, 5-dimethylthiazol-2- yl)-2, 5-diphenyltetrazolium bromide (MTT) can be reduced to a blue colored formazan32. A similar redox-based assay has also been developed using the fluorescent dye, resazurin. In addition to using dyes to indicate the redox potential of cells in order to monitor their viability, researchers have developed assays that use ATP content as a marker of viability (Riss et al., 2004). Adenosine triphosphate (ATP) that is present in all metabolically active cells can be determined in a bioluminescent measurement. The bioluminescent method utilizes an enzyme, luciferase, which catalyses the formation of light from ATP and luciferin. The emitted light intensity is linearly related to the ATP concentration (Weyermann et al.,2005). Neutral red (3- amino-m-dimethylamino-2-methylphenazine hydrochloride) has been used previously for the identification of vital cells in cultures. This assay quantifies the number of viable, uninjured cells after their exposure to toxicants; it is based on the uptake and subsequent lysosomal accumulation of the supravital dye, neutral red. Quantification of the dye extracted from the cells has been shown to be linear with cell numbers, both by direct cell counts and by protein determinations of cell populations (Weyermann et al., 2005).

**Future Perspectives:** In vitro studies of many plant phytoconstituents can be evaluated for various anti-viral activities including anti-HIV activity and COVID-19. Further studies can be carried out to know the mechanism of drug inhibition in virus. Synthetic drugs are proved to cause side effects. However, more exploratory research to prove the efficacy of medicinal plants including plant – drug interactions and their mechanism of action has to be explored so that plant compounds can be used to treat various viral infections including deadly COVID-19.

## CONCLUSION

Many plant species have been investigated for anti-HIV potential and has shown promising activity. Azidothymidine, the first drug that was approved in the fight against AIDS in the 1980s, still a main component in the medication mix commonly prescribed to HIV patients today. But new research have found a plantderived chemical compound that is much more effective than azidothymidine. The chemical compound is called "patentiflorin A" and is derived from a medicinal plant found in East Asia: Justicia gendarussa. Hence, plant based source drugs are non-toxic and work effectively unlike synthetic drugs. Many synthetic medicines are being used in the treatment of AIDS. Various medicinal plants or plant-derived natural products has offered alternatives to expensive medicines in future.

## REFERENCES

Akkouh O, Ng TB, Singh SS, Yin C, Dan X, Chan YS et al., (2015) Lectins with anti-HIV activity: a review Molecules 20, 648668

Akram Muhammad, Tahir Mahmood, Munir et al., (2017) Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: A systematic review. Phytotherapy Research 1–12.

Awah FM, Uzoegwu PN, Ifeonu P (2011) In vitro anti-HIV and immunomodulatory potentials of *Azadirachta indica* (Meliaceae) leaf extract African Journal of Pharmacy and Pharmacology Volume 5(11) pp. 1353-1359

Blanco JL, Whitlock G, Milinkovic A, Moyle G (2015) HIV integrase inhibitors: A new era in the treatment of HIV Expert Opinion Pharmacotherapy 16, 313–1324.

Behbahani M, (2014) Evaluation of anti-HIV-1 activity of a new iridoid glycoside isolated from *Avicenna marina*, in vitro International Immunopharmacology 23, 262–266.

Chang YC, Hsieh PW, Chang FR, Wu RR, Liaw CC, Lee KH, Wu YC (2003) Two new protopines argemexicaines A and B and the anti-HIV alkaloid 6-acetonyldihydrochelerythrine from formosan *Argemone mericana*. Planta Medica 69:148–152

Chukwujekwu JC, Ndhlala AR, de Kock CA, Smith PJ.

Van Staden J, (2014) Antiplasmodial, HIV-1 reverse transcriptase inhibitory and cytotoxicity properties of *Centratherum punctatum* Cass. and its fractions South African Journal of Botany 90, 17–19.

Esposito F, Mandrone M, Del Vecchio C, Carli I, Distinto S, Corona A, Lianza M, Piano D, Tacchini M, Maccioni E et al.,(2017) Multi-target activity of *Hemidesmus indicus* decoction against innovative HIV-1 drug targets and characterization of lupeol mode of action. Pathogens and Disease 75.

Gambari Raberto, Lampronti Ilaria (2006) Inhibition of immunodeficiency type-1 virus (HIV-1) life cycle by medicinal plant extracts and plant-derived compounds Elsevier Volume 2 Pages 299-311.

Gravatt L A H, Leibrand CR, Patel S, McRae M (2017) New drugs in the pipeline for the treatment of HIV: A review. Current Infectious Disease Reports Sep 19;19(11):42

Günthard HF, Aberg JA, Eron JJ, Hoy JF, Telenti A, Benson CA, Burger DM, Cahn P, Gallant JE, Glesby MJ (2014) Antiretroviral treatment of adult HIV infection: recommendations of the International Antiviral Society–USA panel. Journal of the American Medical Association 312, 410–425

Helfer M, Koppensteiner H, Schneider M, Rebensburg S, Forcisi S, Muller C et al., (2014) The root extract of the medicinal plant *Pelargonium sidoides* is a potent HIV-1 attachment inhibitor PLoS One 9.

Jadhav AN, Bhutani KK (2006) Steroidal saponins from the roots of *Asparagus adscendens* Roxb and *Asparagus racemosus* Willd. Indian J Chem Indian Journal of Chemistry 45B:1515–1524

Kapewangolo P, Knott M, Shithigona REK, Uusiku SL, Kandawa-Schulz M, (2016) In vitro anti-HIV and antioxidant activity of *Hoodia gordonii* (Apocynaceae), a commercial plant product BMC Complementary and Alternative Medicine 16, 411.

Kurapati KRV, Atluri VS, Samikkannu T, Garcia G, Nair MP (2014) Natural products as anti-HIV agents and role in HIV-associated neurocognitive disorders (hand): A brief overview. Frontiers in Microbiology 6:1444

Laila Umme, Akram Muhammad, Shariati Ali Mohammad et al.,(2019) Role of medicinal plants in HIV/AIDS therapy Clinical and Experimental Pharmacology and Physiology Volume 46 Issue12 Pages 1063-1073

Ma C Nakamura, N Miyashiro, H Hattori, M Komatsu, K Kawahata et al., (2002) Screening of Chinese and Mongolian herbal drugs for anti-human immunodeficiency virus type 1(HIV-1) activity Phytotherapy Research 16, 186189

Maartens G, Celum C, Lewin SR (2014) HIV infection: Epidemiology, pathogenesis, treatment, and prevention Lancet 384, 258–271

Modi M, Goel T, Das T, Malik S, Suri S et al., (2013) Ellagic acid & gallic acid from *Lagerstroemia speciosa* L. inhibit HIV-1 infection through inhibition of HIV-1 protease & reverse transcriptase activity Indian Journal of Medical Research 137, 540548

Mugomeri Eltony, Chatanga Peter, Chakane Ntema (2016) Medicinal Herbs used by HIV-Positive people in Lesotho African Journal of Traditional, Complementary and Alternative Medicines 13(4): 123–131.

Mukhtar Muhammad, Arshad Mohammad, Ahmad Mahmood et al.,(2013) Antiviral Potential of Medicinal Plants : An overview International Research Journal of Pharmacy 4(6).

Narayan Chaitra, Vittal Rai Ravishankar, Tewtrakul Supinya (2011) A Screening strategy for Selection of Anti-Hiv-1 Integrase and Anti-Hiv-1 Protease Inhibitors from Extracts of Indian Medicinal Plants International Journal of Phytomedicine Volume 11 No 2.

Noundou Siwe, Ndintehde DT, Olivier DK, Mnkandhla D, Isaacs M et al., (2018) Biological activity of plant extracts and isolated compounds from *Alchornea laxiflora*: Anti-HIV, antibacterial and cytotoxicity evaluation South African Journal of Botany-02111 No of Pages 6

Nworu CS, Okoye EL, Ezeifeka GO, Esimone CO (2013) Extracts of Moringa Oleifera Lam. showing Inhibitory Activity against early steps in the Infectivity of HIV-1 Lentiviral particles in a viral vector-based screening African Journal of Biotechnology Volume. 12(30) pp. 4866-4873

Olatunya OS, Olatunya AM, Anyabolu HC, Adejuyigbe EA, Oyelami OA (2012) Preliminary Trial of Aloe Vera Gruel on HIV Infection Journal of Alternative and Complementary Medicine Sep;18(9):850-3.

Palshetkar Aparna, Pathare Navin, Jadhav Nutan et al.,(2020) In vitro anti-HIV activity of some Indian medicinal plant extracts BMC Complementary Medicine and Therapies 20, Article number: 69

Patridge E, Gareiss P, Kinch MS, Hoyer D (2016) An analysis of FDA-approved drugs: natural products and their derivatives Drug Discovery Today 21, 204207

Piscitelli SC, Burstein AH, Welden N, Gallicano KD, Falloon J (2002) The Effect of Garlic Supplements on the Pharmacokinetics of Saquinavir Clinical Infectious Diseases Jan 15;34(2):234-8.

Rege A Anuya, Ambaye Y Ramakrishna, Deshmukh A Ranjana (2010) In-Vitro Testing of Anti-HIV Activity of Some Medicinal Plants Indian Journal of Natural Products and Resources. Volume 1(2) June pp. 193-199

Rege AA, Chowdhary AS, (2013) Evaluation of mangrove plants as putative HIV-protease inhibitors Indian Drugs 50, 41–44.

Riss TL, Moravec RA (2004) Use of multiple assay endpoints to investigate the effects of incubation time, dose of toxin, and plating density in cell-based cytotoxicity assays. ASSAY and Drug Development Technologies Feb;2(1):51-62.

Sabde Sudeep, Bodiwala Hardik, Karmase Aniket et al Anti-HIV activity of Indian medicinal plants (2011) Journal of Natural Medicines, 65:662–669

Salehi Bahare, Nanjangud V. Anil Kumar, Cener Bilge, et al.,(2018) Medicinal Plants Used in the Treatment of Human Immunodeficiency Virus International Journal of Molecular Sciences May;19(5): 1459.

Shan Y, Wang X, Zhou X, Kong L, Niwa M (2007) Two minor diterpene glycosides and an eudesman sesquiterpene from *Coleus forskohlii*. Chemical and Pharmaceutical Bulletin 55:376–381

Singh IP, Bodiwala HS (2010) Recent advances in anti-HIV natural products. Natural Product Reports 27, 1781

Tabe Franklin Nyenty, Yanou Nicolas Njintang, Kamdje Nwabo et al., (2015) Oxidative Role of HIV/AIDS: Antiretroviral Drugs and Medicinal Plants with Anti-HIV Activity Journal of Diseases and Medicinal Plants 1(5): 68-75

Thenin-Houssier S, Valente ST (2016) HIV-1 capsid inhibitors as antiretroviral agents. Current HIV Research 14, 27028

Trivedi Jay, Tripathi Anjali, Chattopadhyay Debprasad, Mitra Debashis (2019) Chapter 11 - Plant-Derived Molecules in Managing HIV Infection Advancements in Herbal Products as Novel Drug Leads pp 273-2983 Visintini María, Redko Flavia, Muschietti Liliana et al., (2013) In vitro antiviral activity of plant extracts from Asteraceae medicinal plants Virology Journal Volume 10.

Wang B, Ge L, Huang W, Zhang H, Qian H, Li J et al.,(2010) Synthesis and preliminary anti-HIV activities of andrographolide derivatives. Journal of Medicinal Chemistry (Los Angeles) 6, 252258

Weyermann J, Lochmann D, Zimmer A (2005) A practical note on the use of cytotoxicity assays International Journal of Pharmaceutics Jan 20;288(2):369-76.

World Health Organization (WHO) [(accessed on 25 December 2019)];2019

Wu TS, Su CR, Lee KH (2012) Cytotoxic and anti-HIV phenanthroindolizidine alkaloids from *Cryptocarya chinensis* Natural Product Communications 7, 725727

Zhou P, Takaishi Y, Duan H, Chen B, Honda G, Itoh M, Takeda Y, Kodzhimatov OK, Lee K-H (2000) Coumarins and bicoumarin from *Ferula sumbul*: anti-HIV activity and inhibition of cytokine release Phytochemistry 53:689–697

Zou Wen, Liu Ying, Wang Jian, Li Hongjuan, Liao Xing (2012) Traditional Chinese Herbal Medicines for Treating HIV Infections and AIDS. Evidence Based Complement Alternate Medicine 2012:950757 8 pages.