
The Role of ICT in our Daily Life Applications:
Obstacles and Challenges

A Comparative Study of NoSQL Databases

Musbah J. Aqel2, Aya Al-Sakran1 and Mohammad Hunaity3

 1Faculty of Information Technology, Applied Science Private University, Amman, Jordan
2Department of Management Information Systems, School of Applied Sciences Cyprus International
University, Lefkosa, North Cyprus
3Faculty of Information Technology, AlBalqa’a Applied University, Jordan

ABSTRACT

A lot of traditional relational databases are still used so far in a very large number of applications. Recently, new data
bases technologies have been developed in the need to deal with the increasing amount of complex data. Millions of
users would do their updates and reads on web applications, in contrast to traditional DBMSs and data warehouses
which have no ability to scale horizontally on these applications. Choosing the most appropriate NoSQL database
would be sometimes tricky so it is important to know the features of the NoSQL database. In this survey, most popular
NoSQL databases: Cassandra MongoDB, CouchDB, Hbase and SimpleDB are compared. This comparison allows the user
to choose the most appropriate database, basing on application’s needs. Also, the focus is on the NoSQL models and
their descriptions, and when they are best used. Lastly, the compared advantages and disadvantages of these data stores
are listed to discuss selecting appropriate NoSQL database which processes huge volumes of data; and provides global
overview of these non-relational NoSQL databases.

KEY WORDS: NOSQL DATABASE, RELATIONAL DATABASE MANAGEMENT SYSTEM, STRUCTURED QUERY LANGUAGE.

17

ARTICLE INFORMATION:

*Corresponding Author: musbahaqel@yahoo.com
Received 12th Nov, 2018
Accepted after revision 29th Dec, 2018
BBRC Print ISSN: 0974-6455
Online ISSN: 2321-4007 CODEN: USA BBRCBA

Thomson Reuters ISI ESC / Clarivate Analytics USA and
Crossref Indexed Journal

NAAS Journal Score 2018: 4.31 SJIF 2017: 4.196
© A Society of Science and Nature Publication, Bhopal India
2018. All rights reserved.
Online Contents Available at: http//www.bbrc.in/
DOI: 10.21786/bbrc/12.1/3

INTRODUCTION

Big data is a term for data sets that are very large and
complex which traditional data processing applications
would not handle with them. It is related to the huge
development of the Internet, mobile devices and cloud
computing. Increasingly, organizations today are facing
more and more big data challenges, including analyzing,

capturing, searching, sharing, storing, transferring, vis-
ualizing, and querying, updating and information pri-
vacy. They have access to all the information, but they
do not know how to get value out of it because it is in a
semi structured or unstructured format. As a result, they
do not even know whether to keep or there is a capabil-
ity to keep it or not [1].

Biosci. Biotech. Res. Comm. Special Issue Vol 12 No (1) January 2019

18 A COMPARATIVE STUDY OF NOSQL DATABASES BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS

Aya Al-Sakran et al.

Big data has the ability to help companies to improve
their operations and make faster decisions. This data,
when captured, formatted, manipulated, stored, and ana-
lyzed would help a company to obtain helpful idea to
increase revenues, customers, and improve operations [2].

Nowadays the widely accepted interpretation defi nes
big data as 3 V’s. The fi rst one is called Variety. Today
data is presented in different formats which are called
unstructured data such as texts, videos, images, sound
and much more. The second one is Velocity that can be
defi ned as the rate at which data is generated, such as
around 100 terabytes of data is uploaded daily on Face-
book, YouTube users upload 48 hours of video every
minute. And the last one is the Volume of data: tera-
bytes of data being processed daily requires very effi -
cient techniques to store and process data [3].

Figure1. below shows the big data about 80% of the
data generated now is unstructured or semi-structured.
The total amount of data is growing very fast [4]

Types of NoSQL Databases

Recently NoSQL database are generated by the huge
growth of data mostly in web and mobile applications.
If it is to be considered that social media web pages
such as Facebook, LinkedIn and Twitter, which are deal-
ing with thousands of terabytes of data, then it must
be noticed that besides handling huge data volume,
those systems still have to maintain latency, meaning
that reading and writing are supposed to be responded
immediately [3]. As previously mentioned there are
many NoSQL types which recently have appeared with
different performances; therefore, they are compared in
terms of performance and verifi ed how the performance
are related to the database types [5]. In this Section
thefollowing NoSQL databases: Cassandra MongoDB,
CouchDB, Hbase and SimpleDB are compared in details.

2.1 Cassandra

Facebook continues to be the most popular and the
largest social media site that contains thousands of
users of the system simultaneously using tens of mil-

lions of servers that are distributed in many data centers
around the whole world. There is always a probability
any server and any of network components may fail at
any given time as any software system needs to be con-
structed in a way that to deal with failures immediately
and effi ciency. To meet those Requirements reliability
and scalability, Facebook Company has developed new
NoSQL Database in 2007 that called Cassandra. Cassan-
dra is the leading NoSQL database that has been devel-
oped by Facebook to solve the problem with slow Inbox
search across millions messages, in which they had to
deal with very large volumes of data in such a way that
was impossible to scale with traditional method and to
handle Facebook’s millions of users searching hits per
day. It is an open source non-relational, column oriented
distributed system for handling very large amounts of
massive structured data distributed over many serv-
ers around the whole world [6], while providing highly
available services to all users at any given time with
no single point of failure. Also, it is used in data-heavy
apps like Instagram, Snapchat which daily handle with
an average of 100 million photos uploaded, and iCloud
which stores over 40 million songs in its database
[7, 8].

Cassandra is mainly consists of two systems: Google’s
BigTable and Amazon’s Dynamo. Both systems meet the
challenge of scaling, but they do it in different methods:
BigTable uses the distributed fi le system Google already
had, while Dynamo is based on a distributed hash table.
Cassandra combines the data structure of Big Table, and
the high availability of Dynamo [9].

Cassandra uses the eventual consistency model which
is used for writing operations and has no central node.
Data would be read from or written to any node in a
cluster and that provides us with continuous horizontal
scalability and has no single point of failure. Because
Cassandra uses peer-to-peer fault-tolerance technology,
no master/slave setup, failover. This means any node in
the cluster would perform users query in the case of any
failure happen, the fi gure1 below shows peer to peer
structure [10].

Figure 1. Growing of Big Data

BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS A COMPARATIVE STUDY OF NOSQL DATABASES 19

Aya Al-Sakran et al.

As shown in the fi gure 2 a peer-to-peer structure
means each node is corresponding to the others, and
there are replications in the ring. If one node fails, the
service will continue of performance. Data on the failed
node would still be accessed. The peer-to-peer design
also makes it easy to scale by adding new nodes. Because
the behavior of each node is separated, in order to add a
new server, it is simply need to add it to the cluster [8].

2.1.1 Cassandra API

Cassandra API consists of the following three simple
methods:

Inser(table,key,rowMutation)
Get (table,key,columnName)
Delete(table,key,columnName)

The column Name can refer to a specifi c column within
a column family, a column family, a super column fam-
ily, or a column within a super column [11].

2.1.2 Facebook Inbox Search

One of the popular applications of Cassandra is Face-
book Inbox Search problem, the inbox search system
needs to handle a very high speed writing, billions of
writings per day and is also required to scale to a very
large amount of users. To keep search, data has to be
replicated to all data centers which are used by differ-

ent users distributed at different geographic areas. It is
noticed that there are very powerful and restricted oper-
ational requirements on Facebook’s platform in terms of

Figure 2. Peer-to-peer Structure

Table 1. Describe some production measured
numbers are showed for their performance.

Latency State Search Term Search
Interactions

Min 7.69ms 7.78ms

Median 15.69ms 18.27ms

Max 26.13ms 44.41ms

performance, reliability and effi ciency, and to keep up
the continuous infi nite growth the platform used needs
to be highly scalable that dealing with failures in an
very effi cient way[11].

For each of these super columns the individuals are
the columns. In order to make the searches, fast Cas-
sandra provides certain hits for intelligent caching of
data; for instance, when a user clicks into the search
bar an asynchronous message is sent to the Cassandra
cluster to prime the buffer cache with that user’s index.
This way when the actual search query is executed, the
search results are likely to already be in memory. The
system currently stores about 50+TB of data on a 150
node cluster, which is spread out between on different
data centers [12].

As shown the table1 above Cassandra can support
a very high update throughput while delivering low
latency [12].

2.1.3 Cassandra Characteristics

The schema of Cassandra is very fl exible and does not
require any database schema design as well as adding
and deleting fi elds are very convenient. And it is Sup-
ports range queries and the scalability is very high such
that a single point of failure does not affect the all clus-
ter and it supports linear expansion [13].

Table 2. below shows how Cassandra Differ from a Relational Database

Relational Database Cassandra
Handles moderate incoming data velocity Handles high incoming data velocity

Data arriving from one/few locations Data arriving from many locations

Manages primarily structured data Manages all types of data

Supports complex/nested transactions Supports simple transactions

Single points of failure with failover No single points of failure; constant uptime

Supports moderate data volumes Supports very high data volumes

Centralized deployments Decentralized deployments

Data written in mostly one location Data written in many locations

Supports read scalability (with consistency sacrifi ces)

Deployed in vertical scale up fashion Deployed in horizontal scale out fashion

Aya Al-Sakran et al.

20 A COMPARATIVE STUDY OF NOSQL DATABASES BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS

2.1.4 Cassandra Data Model:

Key-value data model means each value corre-
sponds to a Key [14].

Column-oriented: column-store systems completely
vertically partition a database into a collection of
individual columns that are stored separately. By
storing each column separately on disk, these col-
umn-based systems enable queries to read just the
attributes they need, rather than read all rows from
disk and discard unneeded attributes once they are
in memory [15].

Document: document database and Key-value is
very similar in structure, but the Value of docu-
ment database is semantic, and is stored in JSON
or XML format [14].

2.1.5 Security Issues in Cassandra

All passwords in Cassandra are encrypted using of MD5
hash function so that the passwords are very weak. If
any malicious user can attack client authorization, user
can extract the data because there is no authorization
mechanism in internode message exchange. Cassandra
is potential for denial of service attack because it per-
forms one thread per one client and it does not support
inline auditing [16]. In order to avoid this, the appli-
cation must encrypt any sensitive information before
writing it to the database. Also, operating-system level
mechanisms should be used to prevent access to the fi les
by unauthorized users [9].

Cassandra uses a query language called Cassandra
Query Language (CQL), which is something like SQL. The

Table 3. Below Show the Different Measurements for Each Data Model.

Data Model Performance Scalability Flexibility Complexity Functionality

Key-Value Store High High High None None

Column High High Moderate Low Minimal

Document High High High Low Low

Oriented Store

authors show that injection attack is possible on Cas-
sandra like SQL injection using CQL. Cassandra also has
problem in managing inactive connection [16].

Cassandra uses a query language called Cassandra
Query Language (CQL), which is something like SQL. The
authors show that injection attack is possible on Cas-
sandra like SQL injection using CQL. Cassandra also has
problem in managing inactive connection [16].

2.2 Mongo DB

Mongo DB is an open-source document-oriented data-
base written in C++ that uses JSON, which is used in a
schema that require less data model. MongoDB’s mainly
provides horizontal scalability by using the automatic
sharing. Replication is also supported using locks and
the asynchronous master-slave model which means
writing operations are only processed by the master
node and reading operations can be made from both the
master node and from one of the slave nodes. Writings
are distributed to the slave nodes by reading from the
master’s operation log. Clients of database have the abil-
ity to select which kind of consistency models they wish,
by defi ning whether reading from secondary nodes are
allowed and from how many nodes the confi rmation
must be obtained [17].

In Mongo DB, document manipulation is a strong
focus, also the database provides different frameworks
and ways of interacting with documents. These can be

queried, sorted, projected, iterated with cursors, and
aggregated, among other operations. The changes to a
document are guaranteed to be atomic. Indexing can
be used on one or several fi elds (implemented using
B-trees), with the possibility of using two-dimensional
spatial indexes for geometry-based data. There are many
different programming interfaces supported by Mon-
goDB, with most popular programming languages hav-
ing native bindings [17].

2.2.1 Mongo DB Features

MongoDB stores data in JSON documents. JSON pro-
vides a rich data model that maps to native program-
ming language types, and the dynamic schema makes
it easier to develop your data model than with a system
that enforces specifi c schemas such as a RDBMS [13].

Power: MongoDB provides a lot of the features of a
traditional RDBMS such as secondary indexes, dynamic
queries, sorting, rich updates, and easy aggregation.
This gives more functions that you are used to from an
RDBMS, with the fl exibility and scaling capability that
the non-relational model allows [13].

Ease of use: MongoDB is very easy to install, confi g-
ure, maintain, and use. Because it provides few confi gu-
ration options [8]. This means you can begin right into
developing the application, instead of spending a lot of
time to search and try to make database confi gurations
[13].

Aya Al-Sakran et al.

BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS A COMPARATIVE STUDY OF NOSQL DATABASES 21

MongoDB can do very strong consistency by using
two parameters: fi rst set to read only from the mas-
ter, meaning that only one node will be accessed for
read. Another way is to set “write” parameter to “replica
acknowledged”, which ensures that write is successfully
completed on all the nodes. These techniques actually
force the data store to the synchronous replication and
therefore decrease the performance [3].

2.2.2 MongoDB Architecture

A MongoDB cluster is different from a Cassandra cluster.
The most noticeable difference is the lack of Homology:
not each node in a MongoDB cluster is the same [9].

2.2.3 Security Issues in MongoDB:

All data in MongoDB is stored as plain text and there
is no encryption mechanism to encrypt data fi les. This
means that any malicious user with access to the fi le
system can extract the information from the fi les. It uses
SSL with X.509 certifi cates for secure communication
between user and MongoDB cluster and intra-cluster
authentication but it does not support authentication
and authorization when running in Sharded mode. The
passwords are encrypted by MD5 hash algorithm and
MD5 algorithm is not a very secure algorithm. Since
mongo uses Javascript as an internal scripting language,
authors in show that MongoDb is potential for scripting
injection attack [16].

2.3 SimpleDB

Amazon’sSimpleDB is a Web service that provides basic
database functions of information indexing and query-
ing in the cloud[18], SimpleDB has been published in
2007. As the name indicates its model is very simple,
it has collection of simple operations such as Select,
Delete, GetAttributes, and PutAttributes on documents.
SimpleDB is simpler than other document stores, as well
as it does not allow nested documents. Also it is support
eventual consistency. Like most of the other systems, it
does asynchronous replication. Unlike key-value data
stores, and like the other document stores, SimpleDB
supports more than one grouping in one database: doc-
uments are put into domains, which support multiple
indexes. You can simply put domains and their meta-
data. Select operations are on one domain, and specify

a conjunction of constraints on attributes, simply in the
form of [19].

select<attributes> from <domain> where
<list of attribute value constraints>

SimpleDB is appropriate option for quick setup without
any administration effort. However, the NoSQL model
is main problem to applications already developed with
relational databases. To adjust a relational-based appli-
cation to a cloud platform may increase in a large main-
tenance effort. In order to decrease a situation like that, It
is suggested to use an access layer that makes the trans-
lation of SQL requests to the SimpleDB API and returns
data in a relational format. It is called SimpleSQL. In this
fi rst version, the basic layer is only able to perform the
four traditional operations: INSERT, UPDATE, DELETE
and SELECT, while SimpleSQL provides more details
about its functionality and implementation. SimpleSQL
is developed by Microsoft .NET Framework version 3.5,
using C# as programming language. Figure 3 shows the
layer architecture, which highlights the three steps of an
SQL command processing [20].

SimpleDB does not automatically distribute data over
servers. Some horizontal scaling can be achieve by read-
ing any of the portions, if you Application don’t effect
by having the latest version. Writes do not scale, how-
ever, because they must go asynchronously to all copies
of a domain. If customers want better scaling, they must
do so manually by sharing themselves [19].

SimpleDB has currently constraints, some of which
are quite limiting: a 10 GB maximum domain size, a
limit of 100 active domains, a 5 second limit on queries,
and so on. Amazon does not license SimpleDB source or
binary code to run on your own servers [19].

2.3.1 Processing and Return in SimpleDB

When the user identify the command, SimpleSQL trans-
late it to a SimpleDB that is called REST method. All
the commands begin with the identifi cation of the target
SimpleDB domain from the target table, extracted from
the command. DELETE and UPDATE commands return
the number of affected items. INSERT returns the result
of the operation (success or fail) and SELECT returns
the data in a table structure using .NET class Data
Table [20].

Figure 3. Layer architecture

Aya Al-Sakran et al.

22 A COMPARATIVE STUDY OF NOSQL DATABASES BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS

2.4 CouchDB

CouchDB currently is one of the most popular NoSQL
databases .The fl exible document structure makes it
ideal for using, fault-tolerant database, which supports
data formats such as ISON and AtomPub, it provides
REST-style API. CouchDB comply with ACID proper-
ties to ensure the consistency of data. Also, CouchDB
provides a P2P-based distributed database solution that
supports bidirectional replication. However, it also has
some limitations, such as only providing an interface
based on HTTP REST, concurrent read and write perfor-
mance is not ideal and so on [14].

CouchDB is not only a NoSQL database, but it is also
a web server for applications developed in JavaScript.
some of feauters of using CouchDB as a web server is
that applications in CouchDB can be deployed by simply
putting them into the database and that the applications
can directly access the database without any overhead
of a query protocol [21].

CouchDB is a schema-less database which is called
“document storage”. Each document is store in JSON,
which is a human-readable markup language similar
to XML, but requiring much less overhead[22], Also
CouchDB provides durability when the system down. All
updates will be deleted to disk on commit, by writing to
the end of a fi le. By default, it fl ushes to disk after every
document update. Together with the MVCC mechanism,
CouchDB’s durability also provides ACID semantics at
the document level. Clients call CouchDB through a
RESTful interface [19].

2.5 HBase

HBase is an open source project, written in Java and
developed by the Apache software foundation. It is an
open source implementation. HBase works with Apache’s
Hadoop Distributed File System (HDFS) as basic data
storage and it is considered as column-oriented. HBase
is a good option for high performance real time queries
of very huge amounts of distributed data [23].

In HBase, data is stored in the form of HBase tables
(HTable) that are multidimensional sorted maps. The
index of the map is the row’s key, column’s name, and
a timestamp. Columns are grouped into column fami-
lies. Column families must be created before data can
be stored under any column key in that family. Data is
maintained in order by row key. Finally, each column
can have multiple versions of the same data indexed
by their timestamp. A read or write operation is per-
formed on a row using the row-key and one or more
column-keys. Update operations on a single row are
atomic. Any update performed is immediately visible to
any read operation. HBase exports a non-blocking key-
value interface on the data: put, get, delete, and scan

operations. HBase closely matches the scale-out proper-
ties assumed for NoSQL databases [24].

2.5.1 Security Issues in HBase

The Security in HBase depends on SSH for inter-node
communication, which supports user authentication by
the use of SASL (Simple Authentication and Security
Layer) with Kerberos. As well as it supports authoriza-
tion by ACL (Access Control List) [16].

 Different performance in Read, Write and delete in
MongoDB, Cassandra and CouchDB

In this section, Evaluation some of NoSQL data-
bases categories with a matrix on basis of few attributes
design, integrity, indexing, distribution, system have
been presented. See table 4 [25].

3.1 Compared between MongoDB, CouchDB, and

Cassandra in Read Operation

First experiment compares the time taken to read values
corresponding to given keys from the cluster. The below
table summarizes the results. In the tables, the number
of operations refers to the number of times a given oper-
ation (such as read) is executed in the test [26].

Table 4. Shows the Time for Reading

Number of
Opertions 10 50 1000 10000 100000

MongoDB 8 14 138 1085 10201

CouchDB 23 101 1819 19508 176098

Cassandra 115 230 2385 19758 228096

Sorted by read performance the list of databases:
is MongoDB, CouchDB, and Cassandra. Of these, Cas-
sandra is column-family databases; and MongoDB,
and CouchDB are documents-oriented databases. It is
observed there is no correlation between the data model
and performance. As well as the read performance of
MongoDB is better than CouchDB and Cassandra [26].

3.2 Compared between MongoDB, CouchDB, and

Cassandra in Writing Operation

Second experiment measures the time taken to write key
value pairs to the bucket. If the key-value pair already
exists in the bucket, this amounts to updating the exist-
ing value [26].

Table 5. Below Summarizes the Results in Writing Operations

Number of
Opertions 10 50 100 1000 10000 100000

Mongo DB 61 75 84 387 2693 23354

Couch DB 90 374 616 6211 67216 932038

Cassandra 117 160 212 1200 9801 88197

Aya Al-Sakran et al.

BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS A COMPARATIVE STUDY OF NOSQL DATABASES 23

Sorted by write performance we have the list of data-
bases: MongoDB, Cassandra, and CouchDB. The write
performance of CouchDB is worse than Cassandra and
MongoDB.

3.3 Compared between MongoDB, CouchDB, and

Cassandra in Delete Operation

The last experiment measures the time taken to delete
key-value pairs from the bucket [26].

Sorted by delete performance the list of databases is:
MongoDB, Cassandra, CouchDB. The delete performance

Table 6. Shows the Time for Deleting and Summarizes the Result

Number of Opertions 10 50 100 1000 10000 100000

Mongo DB 4 15 29 235 2115 18688

Couch DB 71 260 597 5945 67952 705684

Cassandra 33 95 130 1061 9230 83694

of MongoDB is better than Couchbase and Cassandra
[26].

4. Different Criteria for Comparison between NoSQL

Databases SimpleDB, CouchDB, Cassandra and HBase:

4.1 Comparison between NoSQL Databases in in Terms

of Design Side:

The following table7 shows some of Nosql criteria for
comparison such as classifi cation , Protocol, License,
Storage Type and Query Method used for each NOSQL
Databases and Fault Tolerance.

Table 7.

Simple DB CouchDB MongoDB Cassandra Hbase
Nosql
classifi cation

Document
Oriented [21].

Document Oriented
(JSON) [21].

Document Oriented
(BSON) [27].

Column Database[27]. Column Database
[27]

Protocol TCP/IP[21]. HTTP/REST[21] TCP/IP[21] TCP/IP[21]. HTTP/REST[21].

License **** Apache[25] AGPL (Drivers: Apache) Apache[25]. Apache

Storage Type Document [21]. Document[21] Document[21] Columns[21]. Columns[21].

Data Storage S3 (Simple Storage
Solution) [21].

Disk [21]. Disk [21]. Disk[21]. Hadoop[21] .

Query Method String based query Map/Reduce [21]. Map/Reduce [21]. Map/Reduce[21] Map/Reduce[21]

Fault
Tolerance

**** **** No single point of
failure with peer to peer
architecture.[27]

No single point of failure with
sharding approach as we can
confi gure multiple mongos
instances. Single point
of failure in master slave
approach. [27]

Single point of
failure in master
slave approach.
Can be overcome
by failover
clustering.[27]

4.2 Comparision between NoSQL Databases in in terms of System and Characteristics and Architecture side:

Table 8. shows the Architecture, Characteristics, programming language written in, Operating system used for each
NOSQL Databases and maximum size.

Simple DB Couch DB Mongo DB Cassandra Hbase
Written In Erlang [21]. Erlang [21]. C++ [21] Java [21] Java [21]

Operating Linux Mac OS Linux Mac OS Linux Mac OS Linux Mac OS Linux Mac OS

System Windows [21]. Windows [21]. Windows [21]. Windows [21]. X

Value size max **** 20 MB[25] 16 MB [25] 2 GB [25] 2 TB [25]

Characteristics High Available High Consistency High Consistency

And Scalable [29]. Availability Partition Availability Partition

Partition Tolerance Partition Tolerance

Tolerance Persistence [29]. Tolerance Persistence [29].

Persistence [29]. Persistence [29].

Architecture *** *** 1. master slave Peer to peer Master Slave

2. peer to peer via
sharding [27]

architecture
Model [27].

architecture
Model [27].

Aya Al-Sakran et al.

24 A COMPARATIVE STUDY OF NOSQL DATABASES BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS

4.3 Comparison between NoSQL Databases (MongoDB, Cassandra, Hbase) in Read and Write Operations:

Table 9. Shows how database is written and read through Mongo DB, -Cassandra, Hbase:

Mongo DB Cassandra Hbase
Writes Fast when data is in RAM[27]. Very fast writes [27]. Writes slower [27].

Reads performance In a master/slave setup, any changes
are written to the master and then
passed on to slaves. This model is
optimized for reading data, as it
allows data to be read from any slave.
In sharding reads depend on eventual/
strict consistency Level [27].

Performance based
on consistency
level (decreases in
performance with
increase in consistency
level) and replication
Factor [27].

Follows strict consistency
model and are optimized
for reads. Very fast reads
in Hbase with Hadoop
support [27].

4.4 Comparison between NoSQL Databases (MongoDB, Cassandra, Hbase) in Terms of System Integrity:

Table 10. Shows how each NOSQL Database differs in terms of (Atomicity, consistency, isolation, durability, integrity
Model, Replication model Concurrency Control, Transactions and Replication)

Simple DB Couch DB Mongo DB Cassandra Hbase
Atomicity ******* Yes [25]. Conditional [25]. Yes [25]. Yes [25].

Consistency NO[28] Yes [25]. Yes [25]. Yes [25]. Yes [25].

Isolation **** Yes [25]. No [25]. Yes [25]. Yes [25].

Durability Yes [25]. Yes [30]. Yes [30]. Yes [30].

Integrity Model ***** MVCC [25]. BASE [25]. BASE [25]. Log Replication
[25].

Replication Master Slave Master Slave MultiMaster Master Slave

Model Replication Replica Replication Replication [2] Replication

Concurrency
Control

None [21]. MVCC (Multi Version
Concurrency Control) [21].

Locks (Instant
update) [21]

MVCC (Multi Version
Concurrency Control)[21].

Locks [21].

Transactions No[21]. No [21]. No [21] . Local [21]. Local [21].

Replication Asynchrono
us [21].

Asynchronous [21]. Asynchronous [21]. Asynchron ous [21] Asynchronous
[21]

4.5 Comparison between NoSQL Databases (MongoDB, Cassandra, Hbase) in

where to use and the best use for each NOSQL Database:

The following table11 shows the best used and the area
of use for each type of DB Types:

Table 11.

Simple DB Couch DB Mongo DB Cassandra Hbase
Best used For a large number

of concurrent access
[28]

For accumulating
occasionally
changing data, on
which predefi ned
queries are to be
run. Places where
vwerioning is
important [25].

If you need dynamic
queries. If you prefer to
defi ne indexes, not map/
reduce functions. If you
need good performance
on big DB. If you wanted
CouchDB but your data
changes too much, fi lling
up disks [25]

When you need to
store data so huge
that it doesn’t fi t
on server, but still
want a friendly
familiar interface to
it [25].

Hadoop is
probably still the
best way to run
Map/Reduce jobs
on huge datasets.
Best if you use
the Hadoop/HDFS
stack already [25].

Area of use Amazon company
[28]

**** CMS System, Comment
Stroage [2]

Banking, Finance,
logging [2].

Main points
to use

Good option for fast
setup without any a
administration effort
[20]

DB consistency ease
of use [25].

JSON document store
[25]

Store huge datasets
in almost SQL [25].

Billions of rows
X millions of
columns [25].

Aya Al-Sakran et al.

BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS A COMPARATIVE STUDY OF NOSQL DATABASES 25

4.6 Comparison between NoSQL databases (MongoDB, Cassandra, Hbase) in terms of Security:

Table 12. Below presents the security issues between each of NoSQL Databases types:

Assessment Criteria Mongo DB Cassandra Couch DB H Base Simple DB
Authentication Medium [29]. Low [29]. Medium[29] Medium [29].

Access Control High [29]. Low [29]. Low [29]. Medium [29].

Secure Confi guration Medium [29]. Low [29]. Low [29]. Low [29].

Data Encryption Medium [29]. Medium [29]. Medium [29]. Low [29].

Auditing Low [29]. Low [29]. Medium [29]. Medium [29].

Value means.
High: Provides complete support of required fea-
tures needed to secure data
Medium: Provides a limited set of security feature
only and it is advisable to implement missing fea-
tures
Low: Offers very basic security features or no
security at all

CONCLUSION

Basically, the comparison shows NoSQL databases
would not replace relational databases, but instead it
will become a better option for specifi c types of projects.
And no one of these NoSQL databases is best for all use
cases. A user’s prioritization of features will be different
depending on the application, as well as the type of scal-
ability and availability required. This survey may help
the user to choose the most appropriate data store based
on the use case, and some examples of applications that
fi t well with the different data store categories. And, a
storage NoSQL. As overall results in terms of optimi-
zation, NoSQL databases can be divided into two cat-
egories the databases optimized for reads and the data-
bases optimized for updates. Thus, MongoDB optimized
to perform read operations and high availability in an
unreliable environment, while Colum Family databases,
such as Cassandra and HBase have a better performance
during execution of updates, but delivering low latency.
Also, CouchDB has some limitations, such as only pro-
viding an interface based on HTTP REST. Concurrent
read and write performance is not ideal.

REFERENCES

 [1] Zikopoulos, P. and C. Eaton, Understanding big data:
Analytics for enterprise class hadoop and streaming data.
2011: McGraw-Hill Osborne Media.

 [2] Mayer-Schönberger, V. and K. Cukier, Big data: A revo-
lution that will transform how we live, work, and think.
2013: Houghton Miffl in Harcourt.

 [3] Gurevich, Y., Comparative Survey of NoSQL/NewSQL DB
Systems. 2015, The Open University.

 [4] Bǎzǎr, C. and C.S. Iosif, The Transition from RDBMS to
NoSQL. A Comparative Analysis of Three Popular Non-
Relational Solutions: Cassandra, MongoDB and Couch-
base. Database Systems Journal, 2014. 5(2): p. 49-59.

 [5] Bukharmetov, M., et al., Robust Method for Protecting
Electronic Document on Waterway Transport With Steg-
anographic Means by Embedding Digital Watermarks into
Images. Reliability and Statistics In Transportation and
Communication, 2016: P. 32.

 [6] Hecht, R. and S. Jablonski. Nosql evaluation. in Interna-
tional conference on cloud and service computing. 2011.
IEEE.

 [7] Khanna Vadivelu, M., magevadi@ indiana. edu Indiana
University Bloomington.

 [8] Yu, M., Cassandra to back applications. 2011.

 [9] Okman, L., et al. Security issues in nosql databases. in
2011 IEEE 10th International Conference on Trust, Secu-
rity and Privacy in Computing and Communications. 2011.
IEEE.

[10] Sakr, S., et al., A survey of large scale data management
approaches in cloud environments. IEEE Communications
Surveys & Tutorials, 2011. 13(3): p. 311-336.

[11] Lakshman, A. and P. Malik, Cassandra: a decentralized
structured storage system. ACM SIGOPS Operating Sys-
tems Review, 2010. 44(2): p. 35-40.

[12] Jain, R., S. Iyengar, and A. Arora. Overview of popular
graph databases. in Computing, Communications and
Networking Technologies (ICCCNT), 2013 Fourth Interna-
tional Conference on. 2013. IEEE.

[13] Zvarevashe, K. and T.T. Gotora, A Random Walk through
the Dark Side of NoSQL Databases in Big Data Analytics.
International Journal of Science and Research, 2014. 3:
p. 506-09.

[14] Han, J., et al. Survey on NoSQL database. in Pervasive
computing and applications (ICPCA), 2011 6th interna-
tional conference on. 2011. IEEE.

[15] Abadi, D., et al., The design and implementation of mod-
ern column-oriented database systems. 2013: Now.

[16] Sahafi zadeh, E. and M.A. Nematbakhsh, A Survey on
Security Issues in Big Data and NoSQL. Int’l J. Advances
in Computer Science, 2015. 4(4): p. 2322-5157.

 Aya Al-Sakran et al.

26 A COMPARATIVE STUDY OF NOSQL DATABASES BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS

[17] Grolinger, K., et al., Data management in cloud environ-
ments: NoSQL and NewSQL data stores. Journal of Cloud
Computing: Advances, Systems and Applications, 2013.
2(1): p. 1.

[18] Leavitt, N., Will NoSQL databases live up to their promise?
Computer, 2010. 43(2): p. 12-14.

[19] Cattell, R., Scalable SQL and NoSQL data stores. AcmSig-
mod Record, 2011. 39(4): p. 12-27.

[20] Calil, A. and R. dos Santos Mello. SimpleSQL: a relational
layer for SimpleDB. in East European Conference on
Advances in Databases and Information Systems. 2012.
Springer.

[21] Padhy, R.P., M.R. Patra, and S.C. Satapathy, RDBMS to
NoSQL: reviewing some next-generation non-relational
database’s. International Journal of Advanced Engineer-
ing Science and Technologies, 2011. 11(1): p. 15-30.

[22] Vincent, M.L., F. Kuester, and T.E. Levy. OpenDig: In-fi eld
data recording for archaeology and cultural heritage. in
Digital Heritage International Congress (Digital Heritage),
2013. 2013. IEEE.

[23] Weber, S., Nosql databases. University of Applied Sciences
HTW Chur, Switzerland, 2010.

[24] Vilaça, R., et al. An effective scalable SQL engine for nosql
databases. in IFIP International Conference on Distributed
Applications and Interoperable Systems. 2013. Springer.

[25] Moniruzzaman, A. and S.A. Hossain, Nosql database:
New era of databases for big data analytics-classifi -
cation, characteristics and comparison. arXiv preprint
arXiv:1307.0191, 2013.

[26] Li, Y. and S. Manoharan. A performance comparison of
SQL and NoSQL databases. in Communications, Comput-
ers and Signal Processing (PACRIM), 2013 IEEE Pacifi c
Rim Conference on. 2013. IEEE.

[27] Manoj, V., Comparative study of nosql document, column
store databases and evaluation of cassandra. International
Journal of Database Management Systems, 2014. 6(4): p.
11.

[28] Stein, R. and V. Zacharias. Rdf on cloud number nine. in
4th Workshop on New Forms of Reasoning for the Seman-
tic Web: Scalable and Dynamic. 2010.

[29] Zahid, A., R. Masood, and M.A. Shibli. Security of shard-
edNoSQL databases: A comparative analysis. in Informa-
tion Assurance and Cyber Security (CIACS), 2014 Confer-
ence on. 2014. IEEE.

[30] Energy management ((HACS4EM) HACS4EM using wire-
less sensor networks in smart grids. Procedia Comput
Sci 2014; 32:469–76. http://dx.doi.org/10.1016/j.procs.
2014.05.449.

[31] University of Delaware. Car prototype generates electric-
ity, and cash – sciencedaily. Sciencedailyn.d.<http://www.
sciencedaily.com/releases/2007/12/ 071203133532.htm>
[accessed 29.11.17].

[32] Stastny L, Franek L, Bradac Z. Time synchronized low-
voltage measurements for smart grids. Procedia Eng 2015;
100:1389–95. http://dx.doi.org/10.1016/j. proeng.2015.
01.508.

[33] Yilmaz M, Dhansri NR. A smart grid intelligent control
framework. IEEE Green Technol. Conf 2012;3(19–20):1.
http://dx.doi.org/10.1109/GREEN.2012.6200983.

[34] Tarhuni NG, Elkalashy NI, Kawady TA, Lehtonen M. Auton-
omous control strategy for fault management in distri-
bution networks. Electr Power Syst Res 2015;121:252–9.
http://dx.doi.org/10.1016/j.epsr.2014.11.011.

[35] Reddy KS, Kumar M, Mallick TK, Sharon H, Lokeswaran
S. A review of integration, control, communication and
metering (ICCM) of renewable energy based smart grid.
Renew Sustain Energy Rev 2014;38:180–92.

[36] Ferrari P, Sisinni E, Flammini A, Depari A. Adding accu-
rate timestamping capability to wireless networks for
smart grids. ComputNetw 2014;67:1–13. http://dx.doi.
org/10.1016/j.comnet.2014.03.005.

[37] Smart Grid Interoperability Panel. About SGIP 2015.<http://
sgip.org/AboutSGIP> [accessed 29.11.17].

[38] Samad T and A.M. Annaswamy, “The Impact of control
technology-Control for renewable energy and Smart Grid”
www.ieeecss.org. (eds), 2011.

[39] Yan Y, Qian Y, Sharif H, Tipper D. A survey on smart
grid communication infrastructures: Motivations, require-
ments and challenges. IEEE CommunSurv Tutor 2013;
15(1):5–20.

