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ABSTRACT

A lot of traditional relational databases are still used so far in a very large number of applications. Recently, new data 
bases technologies have been developed in the need to deal with the increasing amount of complex data. Millions of 
users would do their updates and reads on web applications, in contrast to traditional DBMSs and data warehouses 
which have no ability to scale horizontally on these applications. Choosing the most appropriate NoSQL database 
would be sometimes tricky so it is important to know the features of the NoSQL database. In this survey, most popular 
NoSQL databases: Cassandra MongoDB, CouchDB, Hbase and SimpleDB are compared. This comparison allows the user 
to choose the most appropriate database, basing on application’s needs. Also, the focus is on the NoSQL models and 
their descriptions, and when they are best used. Lastly, the compared advantages and disadvantages of these data stores 
are listed to discuss selecting appropriate NoSQL database which processes huge volumes of data; and provides global 
overview of these non-relational NoSQL databases.
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INTRODUCTION

Big data is a term for data sets that are very large and 
complex which traditional data processing applications 
would not handle with them. It is related to the huge 
development of the Internet, mobile devices and cloud 
computing. Increasingly, organizations today are facing 
more and more big data challenges, including analyzing, 

capturing, searching, sharing, storing, transferring, vis-
ualizing, and querying, updating and information pri-
vacy. They have access to all the information, but they 
do not know how to get value out of it because it is in a 
semi structured or unstructured format. As a result, they 
do not even know whether to keep or there is a capabil-
ity to keep it or not [1].
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Big data has the ability to help companies to improve 
their operations and make faster decisions. This data, 
when captured, formatted, manipulated, stored, and ana-
lyzed would help a company to obtain helpful idea to 
increase revenues, customers, and improve operations [2].

Nowadays the widely accepted interpretation defi nes 
big data as 3 V’s. The fi rst one is called Variety. Today 
data is presented in different formats which are called 
unstructured data such as texts, videos, images, sound 
and much more. The second one is Velocity that can be 
defi ned as the rate at which data is generated, such as 
around 100 terabytes of data is uploaded daily on Face-
book, YouTube users upload 48 hours of video every 
minute. And the last one is the Volume of data: tera-
bytes of data being processed daily requires very effi -
cient techniques to store and process data [3].

Figure1. below shows the big data about 80% of the 
data generated now is unstructured or semi-structured. 
The total amount of data is growing very fast [4]

Types of NoSQL Databases

Recently NoSQL database are generated by the huge 
growth of data mostly in web and mobile applications. 
If it is to be considered that social media web pages 
such as Facebook, LinkedIn and Twitter, which are deal-
ing with thousands of terabytes of data, then it must 
be noticed that besides handling huge data volume, 
those systems still have to maintain latency, meaning 
that reading and writing are supposed to be responded 
immediately [3]. As previously mentioned there are 
many NoSQL types which recently have appeared with 
different performances; therefore, they are compared in 
terms of performance and verifi ed how the performance 
are related to the database types [5]. In this Section 
thefollowing NoSQL databases: Cassandra MongoDB, 
CouchDB, Hbase and SimpleDB are compared in details.

2.1 Cassandra

Facebook continues to be the most popular and the 
largest social media site that contains thousands of 
users of the system simultaneously using tens of mil-

lions of servers that are distributed in many data centers 
around the whole world. There is always a probability 
any server and any of network components may fail at 
any given time as any software system needs to be con-
structed in a way that to deal with failures immediately 
and effi ciency. To meet those Requirements reliability 
and scalability, Facebook Company has developed new 
NoSQL Database in 2007 that called Cassandra. Cassan-
dra is the leading NoSQL database that has been devel-
oped by Facebook to solve the problem with slow Inbox 
search across millions messages, in which they had to 
deal with very large volumes of data in such a way that 
was impossible to scale with traditional method and to 
handle Facebook’s millions of users searching hits per 
day. It is an open source non-relational, column oriented 
distributed system for handling very large amounts of 
massive structured data distributed over many serv-
ers around the whole world [6], while providing highly 
available services to all users at any given time with 
no single point of failure. Also, it is used in data-heavy 
apps like Instagram, Snapchat which daily handle with 
an average of 100 million photos uploaded, and iCloud 
which stores over 40 million songs in its database 
[7, 8].

Cassandra is mainly consists of two systems: Google’s 
BigTable and Amazon’s Dynamo. Both systems meet the 
challenge of scaling, but they do it in different methods: 
BigTable uses the distributed fi le system Google already 
had, while Dynamo is based on a distributed hash table. 
Cassandra combines the data structure of Big Table, and 
the high availability of Dynamo [9].

Cassandra uses the eventual consistency model which 
is used for writing operations and has no central node. 
Data would be read from or written to any node in a 
cluster and that provides us with continuous horizontal 
scalability and has no single point of failure. Because 
Cassandra uses peer-to-peer fault-tolerance technology, 
no master/slave setup, failover. This means any node in 
the cluster would perform users query in the case of any 
failure happen, the fi gure1 below shows peer to peer 
structure [10].

Figure 1. Growing of Big Data



BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS A COMPARATIVE STUDY OF NOSQL DATABASES 19

Aya Al-Sakran et al.

As shown in the fi gure 2 a peer-to-peer structure 
means each node is corresponding to the others, and 
there are replications in the ring. If one node fails, the 
service will continue of performance. Data on the failed 
node would still be accessed. The peer-to-peer design 
also makes it easy to scale by adding new nodes. Because 
the behavior of each node is separated, in order to add a 
new server, it is simply need to add it to the cluster [8].

2.1.1 Cassandra API

Cassandra API consists of the following three simple 
methods:

Inser(table,key,rowMutation)
Get (table,key,columnName)
Delete(table,key,columnName)

The column Name can refer to a specifi c column within 
a column family, a column family, a super column fam-
ily, or a column within a super column [11].

2.1.2 Facebook Inbox Search

One of the popular applications of Cassandra is Face-
book Inbox Search problem, the inbox search system 
needs to handle a very high speed writing, billions of 
writings per day and is also required to scale to a very 
large amount of users. To keep search, data has to be 
replicated to all data centers which are used by differ-

ent users distributed at different geographic areas. It is 
noticed that there are very powerful and restricted oper-
ational requirements on Facebook’s platform in terms of 

Figure 2. Peer-to-peer Structure

Table 1. Describe some production measured 
numbers are showed for their performance.

Latency State Search Term Search
Interactions

Min 7.69ms 7.78ms

Median 15.69ms 18.27ms

Max 26.13ms 44.41ms

performance, reliability and effi ciency, and to keep up 
the continuous infi nite growth the platform used needs 
to be highly scalable that dealing with failures in an 
very effi cient way[11].

For each of these super columns the individuals are 
the columns. In order to make the searches, fast Cas-
sandra provides certain hits for intelligent caching of 
data; for instance, when a user clicks into the search 
bar an asynchronous message is sent to the Cassandra 
cluster to prime the buffer cache with that user’s index. 
This way when the actual search query is executed, the 
search results are likely to already be in memory. The 
system currently stores about 50+TB of data on a 150 
node cluster, which is spread out between on different 
data centers [12].

As shown the table1 above Cassandra can support 
a very high update throughput while delivering low 
latency [12].

2.1.3 Cassandra Characteristics

The schema of Cassandra is very fl exible and does not 
require any database schema design as well as adding 
and deleting fi elds are very convenient. And it is Sup-
ports range queries and the scalability is very high such 
that a single point of failure does not affect the all clus-
ter and it supports linear expansion [13].

Table 2. below shows how Cassandra Differ from a Relational Database

Relational Database Cassandra
Handles moderate incoming data velocity Handles high incoming data velocity

Data arriving from one/few locations Data arriving from many locations

Manages primarily structured data Manages all types of data

Supports complex/nested transactions Supports simple transactions

Single points of failure with failover No single points of failure; constant uptime

Supports moderate data volumes Supports very high data volumes

Centralized deployments Decentralized deployments

Data written in mostly one location Data written in many locations

Supports read scalability (with consistency sacrifi ces)

Deployed in vertical scale up fashion Deployed in horizontal scale out fashion
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2.1.4 Cassandra Data Model:

Key-value data model means each value corre-
sponds to a Key [14].

Column-oriented: column-store systems completely 
vertically partition a database into a collection of 
individual columns that are stored separately. By 
storing each column separately on disk, these col-
umn-based systems enable queries to read just the 
attributes they need, rather than read all rows from 
disk and discard unneeded attributes once they are 
in memory [15].

Document: document database and Key-value is 
very similar in structure, but the Value of docu-
ment database is semantic, and is stored in JSON 
or XML format [14].

2.1.5 Security Issues in Cassandra

All passwords in Cassandra are encrypted using of MD5 
hash function so that the passwords are very weak. If 
any malicious user can attack client authorization, user 
can extract the data because there is no authorization 
mechanism in internode message exchange. Cassandra 
is potential for denial of service attack because it per-
forms one thread per one client and it does not support 
inline auditing [16]. In order to avoid this, the appli-
cation must encrypt any sensitive information before 
writing it to the database. Also, operating-system level 
mechanisms should be used to prevent access to the fi les 
by unauthorized users [9].

Cassandra uses a query language called Cassandra 
Query Language (CQL), which is something like SQL. The 

Table 3. Below Show the Different Measurements for Each Data Model.

Data Model Performance Scalability Flexibility Complexity Functionality

Key-Value Store High High High None None

Column High High Moderate Low Minimal

Document High High High Low Low

Oriented Store

authors show that injection attack is possible on Cas-
sandra like SQL injection using CQL. Cassandra also has 
problem in managing inactive connection [16].

Cassandra uses a query language called Cassandra 
Query Language (CQL), which is something like SQL. The 
authors show that injection attack is possible on Cas-
sandra like SQL injection using CQL. Cassandra also has 
problem in managing inactive connection [16].

2.2 Mongo DB

Mongo DB is an open-source document-oriented data-
base written in C++ that uses JSON, which is used in a 
schema that require less data model. MongoDB’s mainly 
provides horizontal scalability by using the automatic 
sharing. Replication is also supported using locks and 
the asynchronous master-slave model which means 
writing operations are only processed by the master 
node and reading operations can be made from both the 
master node and from one of the slave nodes. Writings 
are distributed to the slave nodes by reading from the 
master’s operation log. Clients of database have the abil-
ity to select which kind of consistency models they wish, 
by defi ning whether reading from secondary nodes are 
allowed and from how many nodes the confi rmation 
must be obtained [17].

In Mongo DB, document manipulation is a strong 
focus, also the database provides different frameworks 
and ways of interacting with documents. These can be 

queried, sorted, projected, iterated with cursors, and 
aggregated, among other operations. The changes to a 
document are guaranteed to be atomic. Indexing can 
be used on one or several fi elds (implemented using 
B-trees), with the possibility of using two-dimensional 
spatial indexes for geometry-based data. There are many 
different programming interfaces supported by Mon-
goDB, with most popular programming languages hav-
ing native bindings [17].

2.2.1 Mongo DB Features

MongoDB stores data in JSON documents. JSON pro-
vides a rich data model that maps to native program-
ming language types, and the dynamic schema makes 
it easier to develop your data model than with a system 
that enforces specifi c schemas such as a RDBMS [13].

Power: MongoDB provides a lot of the features of a 
traditional RDBMS such as secondary indexes, dynamic 
queries, sorting, rich updates, and easy aggregation. 
This gives more functions that you are used to from an 
RDBMS, with the fl exibility and scaling capability that 
the non-relational model allows [13].

Ease of use: MongoDB is very easy to install, confi g-
ure, maintain, and use. Because it provides few confi gu-
ration options [8]. This means you can begin right into 
developing the application, instead of spending a lot of 
time to search and try to make database confi gurations 
[13].
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MongoDB can do very strong consistency by using 
two parameters: fi rst set to read only from the mas-
ter, meaning that only one node will be accessed for 
read. Another way is to set “write” parameter to “replica 
acknowledged”, which ensures that write is successfully 
completed on all the nodes. These techniques actually 
force the data store to the synchronous replication and 
therefore decrease the performance [3].

2.2.2 MongoDB Architecture

A MongoDB cluster is different from a Cassandra cluster. 
The most noticeable difference is the lack of Homology: 
not each node in a MongoDB cluster is the same [9].

2.2.3 Security Issues in MongoDB:

All data in MongoDB is stored as plain text and there 
is no encryption mechanism to encrypt data fi les. This 
means that any malicious user with access to the fi le 
system can extract the information from the fi les. It uses 
SSL with X.509 certifi cates for secure communication 
between user and MongoDB cluster and intra-cluster 
authentication but it does not support authentication 
and authorization when running in Sharded mode. The 
passwords are encrypted by MD5 hash algorithm and 
MD5 algorithm is not a very secure algorithm. Since 
mongo uses Javascript as an internal scripting language, 
authors in show that MongoDb is potential for scripting 
injection attack [16].

2.3 SimpleDB

Amazon’sSimpleDB is a Web service that provides basic 
database functions of information indexing and query-
ing in the cloud[18], SimpleDB has been published in 
2007. As the name indicates its model is very simple, 
it has collection of simple operations such as Select, 
Delete, GetAttributes, and PutAttributes on documents. 
SimpleDB is simpler than other document stores, as well 
as it does not allow nested documents. Also it is support 
eventual consistency. Like most of the other systems, it 
does asynchronous replication. Unlike key-value data 
stores, and like the other document stores, SimpleDB 
supports more than one grouping in one database: doc-
uments are put into domains, which support multiple 
indexes. You can simply put domains and their meta-
data. Select operations are on one domain, and specify 

a conjunction of constraints on attributes, simply in the 
form of [19].

select<attributes> from <domain> where
<list of attribute value constraints>

SimpleDB is appropriate option for quick setup without 
any administration effort. However, the NoSQL model 
is main problem to applications already developed with 
relational databases. To adjust a relational-based appli-
cation to a cloud platform may increase in a large main-
tenance effort. In order to decrease a situation like that, It 
is suggested to use an access layer that makes the trans-
lation of SQL requests to the SimpleDB API and returns 
data in a relational format. It is called SimpleSQL. In this 
fi rst version, the basic layer is only able to perform the 
four traditional operations: INSERT, UPDATE, DELETE 
and SELECT, while SimpleSQL provides more details 
about its functionality and implementation. SimpleSQL 
is developed by Microsoft .NET Framework version 3.5, 
using C# as programming language. Figure 3 shows the 
layer architecture, which highlights the three steps of an 
SQL command processing [20].

SimpleDB does not automatically distribute data over 
servers. Some horizontal scaling can be achieve by read-
ing any of the portions, if you Application don’t effect 
by having the latest version. Writes do not scale, how-
ever, because they must go asynchronously to all copies 
of a domain. If customers want better scaling, they must 
do so manually by sharing themselves [19].

SimpleDB has currently constraints, some of which 
are quite limiting: a 10 GB maximum domain size, a 
limit of 100 active domains, a 5 second limit on queries, 
and so on. Amazon does not license SimpleDB source or 
binary code to run on your own servers [19].

2.3.1 Processing and Return in SimpleDB

When the user identify the command, SimpleSQL trans-
late it to a SimpleDB that is called REST method. All 
the commands begin with the identifi cation of the target 
SimpleDB domain from the target table, extracted from 
the command. DELETE and UPDATE commands return 
the number of affected items. INSERT returns the result 
of the operation (success or fail) and SELECT returns 
the data in a table structure using .NET class Data 
Table [20].

Figure 3. Layer architecture



Aya Al-Sakran et al.

22 A COMPARATIVE STUDY OF NOSQL DATABASES BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS

2.4 CouchDB

CouchDB currently is one of the most popular NoSQL 
databases .The fl exible document structure makes it 
ideal for using, fault-tolerant database, which supports 
data formats such as ISON and AtomPub, it provides 
REST-style API. CouchDB comply with ACID proper-
ties to ensure the consistency of data. Also, CouchDB 
provides a P2P-based distributed database solution that 
supports bidirectional replication. However, it also has 
some limitations, such as only providing an interface 
based on HTTP REST, concurrent read and write perfor-
mance is not ideal and so on [14].

CouchDB is not only a NoSQL database, but it is also 
a web server for applications developed in JavaScript. 
some of feauters of using CouchDB as a web server is 
that applications in CouchDB can be deployed by simply 
putting them into the database and that the applications 
can directly access the database without any overhead 
of a query protocol [21].

CouchDB is a schema-less database which is called 
“document storage”. Each document is store in JSON, 
which is a human-readable markup language similar 
to XML, but requiring much less overhead[22], Also 
CouchDB provides durability when the system down. All 
updates will be deleted to disk on commit, by writing to 
the end of a fi le. By default, it fl ushes to disk after every 
document update. Together with the MVCC mechanism, 
CouchDB’s durability also provides ACID semantics at 
the document level. Clients call CouchDB through a 
RESTful interface [19].

2.5 HBase

HBase is an open source project, written in Java and 
developed by the Apache software foundation. It is an 
open source implementation. HBase works with Apache’s 
Hadoop Distributed File System (HDFS) as basic data 
storage and it is considered as column-oriented. HBase 
is a good option for high performance real time queries 
of very huge amounts of distributed data [23].

In HBase, data is stored in the form of HBase tables 
(HTable) that are multidimensional sorted maps. The 
index of the map is the row’s key, column’s name, and 
a timestamp. Columns are grouped into column fami-
lies. Column families must be created before data can 
be stored under any column key in that family. Data is 
maintained in order by row key. Finally, each column 
can have multiple versions of the same data indexed 
by their timestamp. A read or write operation is per-
formed on a row using the row-key and one or more 
column-keys. Update operations on a single row are 
atomic. Any update performed is immediately visible to 
any read operation. HBase exports a non-blocking key-
value interface on the data: put, get, delete, and scan 

operations. HBase closely matches the scale-out proper-
ties assumed for NoSQL databases [24].

2.5.1 Security Issues in HBase

The Security in HBase depends on SSH for inter-node 
communication, which supports user authentication by 
the use of SASL (Simple Authentication and Security 
Layer) with Kerberos. As well as it supports authoriza-
tion by ACL (Access Control List) [16].

 Different performance in Read, Write and delete in 
MongoDB, Cassandra and CouchDB

In this section, Evaluation some of NoSQL data-
bases categories with a matrix on basis of few attributes 
design, integrity, indexing, distribution, system have 
been presented. See table 4 [25].

3.1 Compared between MongoDB, CouchDB, and 

Cassandra in Read Operation

First experiment compares the time taken to read values 
corresponding to given keys from the cluster. The below 
table summarizes the results. In the tables, the number 
of operations refers to the number of times a given oper-
ation (such as read) is executed in the test [26].

Table 4. Shows the Time for Reading

Number of 
Opertions 10 50 1000 10000 100000

MongoDB 8 14 138 1085 10201

CouchDB 23 101 1819 19508 176098

Cassandra 115 230 2385 19758 228096

Sorted by read performance the list of databases: 
is MongoDB, CouchDB, and Cassandra. Of these, Cas-
sandra is column-family databases; and MongoDB, 
and CouchDB are documents-oriented databases. It is 
observed there is no correlation between the data model 
and performance. As well as the read performance of 
MongoDB is better than CouchDB and Cassandra [26].

3.2 Compared between MongoDB, CouchDB, and 

Cassandra in Writing Operation

Second experiment measures the time taken to write key 
value pairs to the bucket. If the key-value pair already 
exists in the bucket, this amounts to updating the exist-
ing value [26].

Table 5. Below Summarizes the Results in Writing Operations

Number of 
Opertions 10 50 100 1000 10000 100000

Mongo DB 61 75 84 387 2693 23354

Couch DB 90 374 616 6211 67216 932038

Cassandra 117 160 212 1200 9801 88197
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Sorted by write performance we have the list of data-
bases: MongoDB, Cassandra, and CouchDB. The write 
performance of CouchDB is worse than Cassandra and 
MongoDB.

3.3 Compared between MongoDB, CouchDB, and 

Cassandra in Delete Operation

The last experiment measures the time taken to delete 
key-value pairs from the bucket [26].

Sorted by delete performance the list of databases is: 
MongoDB, Cassandra, CouchDB. The delete performance 

Table 6. Shows the Time for Deleting and Summarizes the Result

Number of Opertions 10 50 100 1000 10000 100000

Mongo DB 4 15 29 235 2115 18688

Couch DB 71 260 597 5945 67952 705684

Cassandra 33 95 130 1061 9230 83694

of MongoDB is better than Couchbase and Cassandra 
[26].

4. Different Criteria for Comparison between NoSQL 

Databases SimpleDB, CouchDB, Cassandra and HBase:

4.1 Comparison between NoSQL Databases in in Terms 

of Design Side:

The following table7 shows some of Nosql criteria for 
comparison such as classifi cation , Protocol, License, 
Storage Type and Query Method used for each NOSQL 
Databases and Fault Tolerance.

Table 7.

Simple DB CouchDB MongoDB Cassandra Hbase
Nosql 
classifi cation

Document 
Oriented [21].

Document Oriented 
(JSON) [21].

Document Oriented 
(BSON) [27].

Column Database[27]. Column Database 
[27]

Protocol TCP/IP[21]. HTTP/REST[21] TCP/IP[21] TCP/IP[21]. HTTP/REST[21].

License **** Apache[25] AGPL (Drivers: Apache) Apache[25]. Apache

Storage Type Document [21]. Document[21] Document[21] Columns[21]. Columns[21].

Data Storage S3 (Simple Storage 
Solution) [21].

Disk [21]. Disk [21]. Disk[21]. Hadoop[21] .

Query Method String based query Map/Reduce [21]. Map/Reduce [21]. Map/Reduce[21] Map/Reduce[21]

Fault 
Tolerance

**** **** No single point of 
failure with peer to peer 
architecture.[27]

No single point of failure with 
sharding approach as we can 
confi gure multiple mongos 
instances. Single point 
of failure in master slave 
approach. [27]

Single point of 
failure in master 
slave approach. 
Can be overcome 
by failover 
clustering.[27]

4.2 Comparision between NoSQL Databases in in terms of System and Characteristics and Architecture side:

Table 8. shows the Architecture, Characteristics, programming language written in, Operating system used for each 
NOSQL Databases and maximum size.

Simple DB Couch DB Mongo DB Cassandra Hbase
Written In Erlang [21]. Erlang [21]. C++ [21] Java [21] Java [21]

Operating Linux Mac OS Linux Mac OS Linux Mac OS Linux Mac OS Linux Mac OS

System Windows [21]. Windows [21]. Windows [21]. Windows [21]. X

Value size max **** 20 MB[25] 16 MB [25] 2 GB [25] 2 TB [25]

Characteristics High Available High Consistency High Consistency

And Scalable [29]. Availability Partition Availability Partition

Partition Tolerance Partition Tolerance

Tolerance Persistence [29]. Tolerance Persistence [29].

Persistence [29]. Persistence [29].

Architecture *** *** 1. master slave Peer to peer Master Slave

2. peer to peer via 
sharding [27]

architecture 
Model [27].

architecture 
Model [27].
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4.3 Comparison between NoSQL Databases (MongoDB, Cassandra, Hbase) in Read and Write Operations:

Table 9. Shows how database is written and read through Mongo DB, -Cassandra, Hbase:

Mongo DB Cassandra Hbase
Writes Fast when data is in RAM[27]. Very fast writes [27]. Writes slower [27].

Reads performance In a master/slave setup, any changes 
are written to the master and then 
passed on to slaves. This model is 
optimized for reading data, as it 
allows data to be read from any slave. 
In sharding reads depend on eventual/
strict consistency Level [27].

Performance based 
on consistency 
level (decreases in 
performance with 
increase in consistency 
level) and replication 
Factor [27].

Follows strict consistency 
model and are optimized 
for reads. Very fast reads 
in Hbase with Hadoop 
support [27].

4.4 Comparison between NoSQL Databases (MongoDB, Cassandra, Hbase) in Terms of System Integrity:

Table 10. Shows how each NOSQL Database differs in terms of (Atomicity, consistency, isolation, durability, integrity 
Model, Replication model Concurrency Control, Transactions and Replication)

Simple DB Couch DB Mongo DB Cassandra Hbase
Atomicity ******* Yes [25]. Conditional [25]. Yes [25]. Yes [25].

Consistency NO[28] Yes [25]. Yes [25]. Yes [25]. Yes [25].

Isolation **** Yes [25]. No [25]. Yes [25]. Yes [25].

Durability Yes [25]. Yes [30]. Yes [30]. Yes [30].

Integrity Model ***** MVCC [25]. BASE [25]. BASE [25]. Log Replication 
[25].

Replication Master Slave Master Slave MultiMaster Master Slave

Model Replication Replica Replication Replication [2] Replication

Concurrency 
Control

None [21]. MVCC (Multi Version 
Concurrency Control) [21].

Locks (Instant 
update) [21]

MVCC (Multi Version 
Concurrency Control)[21].

Locks [21].

Transactions No[21]. No [21]. No [21] . Local [21]. Local [21].

Replication Asynchrono 
us [21].

Asynchronous [21]. Asynchronous [21]. Asynchron ous [21] Asynchronous 
[21]

4.5 Comparison between NoSQL Databases (MongoDB, Cassandra, Hbase) in 

where to use and the best use for each NOSQL Database:

The following table11 shows the best used and the area 
of use for each type of DB Types:

Table 11.

Simple DB Couch DB Mongo DB Cassandra Hbase
Best used For a large number 

of concurrent access 
[28] 

For accumulating 
occasionally 
changing data, on 
which predefi ned 
queries are to be 
run. Places where 
vwerioning is 
important [25].

If you need dynamic 
queries. If you prefer to 
defi ne indexes, not map/
reduce functions. If you 
need good performance 
on big DB. If you wanted 
CouchDB but your  data 
changes too much, fi lling 
up disks [25]

When you need to 
store data so huge 
that it doesn’t fi t 
on server, but still 
want a friendly 
familiar interface to 
it [25].

Hadoop is 
probably still the 
best way to run 
Map/Reduce jobs 
on huge datasets. 
Best if you use 
the Hadoop/HDFS 
stack already [25].

Area of use Amazon company 
[28]

**** CMS System, Comment 
Stroage [2]

Banking, Finance, 
logging [2].

****

Main points 
to use 

Good option for fast 
setup without any a 
administration effort 
[20] 

DB consistency ease 
of use [25].

JSON document store 
[25]

Store huge datasets 
in almost SQL [25].

Billions of rows 
X millions of 
columns [25].
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4.6 Comparison between NoSQL databases (MongoDB, Cassandra, Hbase) in terms of Security:

Table 12. Below presents the security issues between each of NoSQL Databases types: 

Assessment Criteria Mongo DB Cassandra Couch DB H Base Simple DB
Authentication Medium [29]. Low [29]. Medium[29] Medium [29].

Access Control High [29]. Low [29]. Low [29]. Medium [29].

Secure Confi guration Medium [29]. Low [29]. Low [29]. Low [29].

Data Encryption Medium [29]. Medium [29]. Medium [29]. Low [29].

Auditing Low [29]. Low [29]. Medium [29]. Medium [29].

Value means.
High: Provides complete support of required fea-
tures needed to secure data
Medium: Provides a limited set of security feature 
only and it is advisable to implement missing fea-
tures
Low: Offers very basic security features or no 
security at all

CONCLUSION

Basically, the comparison shows NoSQL databases 
would not replace relational databases, but instead it 
will become a better option for specifi c types of projects. 
And no one of these NoSQL databases is best for all use 
cases. A user’s prioritization of features will be different 
depending on the application, as well as the type of scal-
ability and availability required. This survey may help 
the user to choose the most appropriate data store based 
on the use case, and some examples of applications that 
fi t well with the different data store categories. And, a 
storage NoSQL. As overall results in terms of optimi-
zation, NoSQL databases can be divided into two cat-
egories the databases optimized for reads and the data-
bases optimized for updates. Thus, MongoDB optimized 
to perform read operations and high availability in an 
unreliable environment, while Colum Family databases, 
such as Cassandra and HBase have a better performance 
during execution of updates, but delivering low latency. 
Also, CouchDB has some limitations, such as only pro-
viding an interface based on HTTP REST. Concurrent 
read and write performance is not ideal.
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