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ABSTRACT

The paper deals with a model that describes a prey predator system with disease in the prey population where 
we have investigated the effect of harvest on the disease when vaccination strategies fail to recover the infected 
prey population. Many infectious diseases like varicella, which is a highly transferable infection caused by the 
varicella zoster virus and causes even death if untreated. When the disease affected the prey species, prey species 
is divided into two categories: susceptible prey and infected prey. From infected prey, the disease is transmitted 
to the susceptible prey species. It is assumed that infection effect both prey and predator species, but the disease 
is debilitating and ultimately causing death for predators. Once a predator is infected, it can be considered to be 
dead and infected prey does not recover due to failure of vaccination strategies. The infected prey species are 
subjected to harvesting at low and high harvesting rates. It is shown that effective harvesting of infected prey can 
control the spread of disease and prevent predator species from extinction. Equilibrium points are obtained by lin-
earization and Jacobian matrix. The local and global stability of the various equilibrium points of the system was 
investigated. It is observed that coexistence of both the prey and predator species is possible through non-periodic 
solution due to the Bendixson-Dulac criterion. With the help of Routh-Hurwitz criterion and Liapunov function, 
local and global stability of the non-periodic orbits are determined. Some numerical simulations have been carried 
out to justify the results obtained.

KEY WORDS: PREY-PREDATOR MODEL, EQUILIBRIUM POINTS, STABILITY ANALYSIS, HARVESTING ACTIVITY

231

ARTICLE INFORMATION:

*Corresponding Author: 
Received 25th March, 2018
Accepted after revision 26th June, 2018 
BBRC Print ISSN: 0974-6455
Online ISSN: 2321-4007 CODEN: USA BBRCBA 

Thomson Reuters ISI ESC / Clarivate Analytics USA and 
Crossref Indexed Journal 

NAAS Journal Score 2018: 4.31 SJIF 2017: 4.196
© A Society of Science and Nature Publication, Bhopal India 
2018. All rights reserved.
Online Contents Available at: http//www.bbrc.in/
DOI: 10.21786/bbrc/11.1/6



232 A DYNAMIC EFFECT OF INFECTIOUS DISEASE ON PREY PREDATOR SYSTEM AND HARVESTING POLICY BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS

Rachna Soni and Usha Chouhan

INTRODUCTION

Mathematical models have become important tools in 
analyzing the dynamical relationship between predator 
and their prey. The predator prey system is one of the 
well-known models which have been studied and dis-
cussed a lot. The Lotka-Volterra predator prey system 
has been proposed to describe the population dynam-
ics of two interacting species of a predator and its prey 
(Lotka, 1925, Volterra, 1931, Arb Von et al., 2013), 
Lotka–Volterra equation are of form 

 

 (1.1)

 
Where x and y are the prey and predator respectively; a 
is the growth rate of the prey (species) in the absence of 
interaction with the predator (species), b is the effect of 
the predation of species to species, c is the growth rate 
of species in perfect conditions: abundant prey and no 
negative environmental impact and d is the death rate 
of the species in perfect conditions: abundant prey and 
no negative environmental impact from natural cause. 
One of the unrealistic assumptions in the Lotka-Volt-
erra model is that the growth of the prey populations is 
unbounded in the absence of the predator. Murray (Mur-
ray, 1989) modifi ed the Lokta-Volterra model and the 
model were based on assumptions that the prey popula-
tion exhibits logistic growth in the absence of predators, 
then the model obtained:

  (1.2)

 
where a, b, c, d, k1, k2 are all positive constants. This 
model was investigated and the conditions for stabil-
ity obtained.Ecological populations suffer from various 
types of diseases. These diseases often play signifi cant 
roles in balancing the population sizes. Most impor-
tant models for the transmission of infectious diseases 
descend from the classical SIR model (Kermack and 
McKendrick,1927). In the past decades, several epidemic 
models with disease in prey have been extensively stud-
ied in various forms and contexts, for example, by Heth-
cote, (2000), Hethcote et al., (2004), Johri et al., (2012), 
Nandi et al., (2015), Sujatha et al., (2016), Mbava, (2017) 
and Yang, (2018). 

In particular, a predator-prey model with disease in 
the prey and analyzed a model of a three species eco-epi-
demiological system, namely, susceptible prey, infected 

prey and predator (Chattopadhyay and Arino,1999). 
Another prey-predator model with harvesting activity of 
prey which has been observed is that when the harvest-
ing activity of prey is taken into consideration, then the 
population size of predator decreases and the naturally 
stable equilibrium of the model becomes unstable (Singh 
and Bhatti, 2012). A mathematical model to study the 
response of a predator-prey model to a disease in both 
the populations and harvesting of each species (Das, 
2014), the model with two-stage infection in prey, the 
early stage of infected prey is more vulnerable to preda-
tion by the predator and the later stage of infected pests 
is not eaten by the predator (Nandi el al., 2015), har-
vested prey – predator model with SIS epidemic disease 
in the prey population (Sujatha et al., 2016). The preda-
tor–prey model with disease in super-predator are inves-
tigated and obtained the results that in the absence of 
additional mortality on predator by a super - predator, 
the predator species survives extinction (Mbava, 2017). 
A diffusive predator-prey model with herd behavior has 
been developed and the local and global stability of the 
unique homogeneous positive steady state is obtained 
(Yang, 2018).

A compartmental mathematical model based on the 
dynamics of the infection and apply vaccination strate-
gies with herd immunity to reduce the intensity of dis-
ease spread in the prey-predator ecosystem (Bakare et al., 
2012). We considered the work proposed by E.A. Bakare, 
because sometimes vaccination strategies become inef-
fective, in that case dynamic changes developed in the 
system, which we were investigated in the present work. 
We are trying to demonstrate the effect of vaccination 
when it failed to recover from the disease One of the 
purposes of this article is to explore the complex effect 
of the prey predator model in epidemiological system 
due to failure of vaccination strategies. The proposed 
model is characterized by a pair of fi rst order nonlinear 
differential equations and the existence of the possible 
equilibrium points along with their stability is discussed. 
And fi nally, some numerical examples are discussed.

MATERRIAL AND METHODS

We shall consider the following prey predator system for 
analyzing it mathematically,

  

(2.1)
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Where x, y and z stand for the density of susceptible 
predator, susceptible prey andinfected prey populations, 
respectively.And the parameters ‘a’ is the natural death 
of the healthy susceptible predator, ‘b’ is the number 
of contact between susceptible prey and healthy sus-
ceptible predator, ‘c’ is the number of contact between 
healthy susceptible predator and infected prey, ‘e’ is the 
number of contact between healthy susceptible predator 
with infected prey and susceptible prey, ‘f’ is the number 
of contact between healthy susceptible prey and infected 
prey, ‘g’ is the harvesting rate of infected prey , h is the 
per capita birth rate of susceptible prey (per time) and 
infected prey and  is the proportion of those succes-
sively vaccinated at birth.

The model consists of basic assumptions that we 
have made in formulating the model are: The relative 
birth rate for infected prey and that of susceptible prey 
remains the same.The disease is severely weakened 
and ultimately causing death for the predators. Once a 
predator is infected, it can be assumed to be dead. We 
will therefore consider only susceptible predator andin-
fectious disease spreads among the prey population by 
contact, and the rate of infection is proportional to the 
infected and the susceptible prey.The predator makes no 
difference between susceptible and infected members of 
the prey population. The predator becomes infected by 
consuming the infected prey. The rate of predator infec-
tion is proportional to the product of infected prey and 
susceptible predators.The infected prey does not recover.

To begin with, let us fi nd the equilibrium points of 
the system (2.1)

The system (2.1) has the following equilibrium points:

Where x*, y*, z* are given by 
In the next section, let us discuss the stability of the 

fi ve equilibrium points in the next which are obtained 
above.

RESULTS AND DISCUSSION

Stability Analysis: In this section, we analyzed the local 
behavior of the system (2.1) around each equilibrium 
point. The Jacobian matrix of the system of state vari-
ables is as follows:

To determine the stability of the equilibrium points, we 
look at the most useful techniques for analyzing non-

linear system is the linearized stability technique by 
theorem1.

Theorem 1:
Let 

.
There are at most three roots of the 

equation . Then the following statements are true:

a)  If every root of the equation has absolute value 
less than one, then the equilibrium point of 
the system is locally asymptotically stable and 
equilibrium point is called a sink.

b)  If at-least one of the roots of the equation has 
an absolute value greater than one, then the 
equilibrium point of the system is unstable and 
equilibrium point is called a saddle.

c)  If every root of the equation has an absolute 
value greater than one, then the system is 
sourced.

d)  The equilibrium point of the system is called 
hyperbolic if no root of the equation has abso-
lute value equal to one. If there exists a root 
of the equation with absolute value equal to 
one, then the equilibrium point is called non-
hyperbolic (i.e. one eigenvalue has a vanishing 
real part).

Let us preparefour propositions in order to discuss the 
local stability around each equilibrium point.

Preposition 1: For system (2.1),
The equilibrium point E0 is locally asymptotically stable 
if h<1 and h<g.

Proof: The Jacobian matrix at E0 (0,0,0) is given by

The Eigenvalue corresponding to the equilibrium point 
E0 (0,0,0) are –a, h, h-g. Only one Eigen value is negative 
and other two depends upon the value of h i.e. Birth rate 
of susceptible and infected prey. Then by theorem 1, we 
obtain E0is locally asymptotically stable if h<1 and h<g.

Preposition 2: For system (2.1), The equilibrium point 
E1is locally asymptotically stable if 
and af+cg<1.

Proof: The Jacobian matrix at  is given by
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If the corresponding Eigenvalues are 1, 2, 3 then 

Thenby theorem 1, we obtain  is locally 
asymptoticallystable if  and af+cg<1.

Preposition 3:For system (2.1),
The equilibrium point E2 is locally asymptotically stable 
if .

Proof: The Jacobian matrix at  is given 
by

If the corresponding Eigenvalues are 1, 2, 3 then 

Then by theorem 1, we obtain  is 
locally asymptotically stable if  and

Preposition 4:For system (2.1),
The equilibrium point E3 is neutral if eigenvalue is imag-
inary.

Proof: The Jacobian matrix at  is given by

If the corresponding Eigenvalues are 1, 2, 3 then 

One Eigen value l1 is negative if af<bg+af and the 
remaining two Eigen values l2 and l3 are imaginary.
The Eigenvalues are purely imaginary, its real parts are 
exactly 0. The equilibrium point  is neutral.Then 
by theorem 1(d), we obtain this preposition.

Let us discuss the stability of the E4 by Routh-Hurwit-
zcriterian.Local stability of the system (2.1) around the 
non-zero equilibrium point E4.

The Jacobian matrix at  is given by

Where x*, y*, z* are given by 

The characteristic polynomial for the Jacobian matrix 
J (E4) is given by 

Where

According to Routh-Hurwitzcriterian,  is 
asymptotically stable if and only if A1>0, A3>0 and 
A1A2-A3>0.

Theorem 2. (E0) is globally stable.

Proof. Let a Liapunov function be,

The theorem above, then implies that (E0) is globally 
asymptotically stable.

Now, let us fi nd the global stability of the system 
(2.1) around all the equilibrium points for different 2-D 
planes by using Bendixson-Dulac criterion.

Theorem 3. E2 is globally asymptotically stable in y-z 
plane.

Proof. Let,

It is obvious that  if and.
Now, we denote 
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FIGURE 4a. Represents the effect of high harvesting on the population of the infected 
prey as time goes on.

FIGURE 4b. Represents the effect of high harvesting on the population of the healthy 
predator, susceptible prey and infected prey as time goes on.

Then,

Thus,  
Therefore, by using Bendixson-Dulac criterion, there 
will be no periodic orbit in the y-z plane. 

In the similar manner, we can show in the x-z plane 
for E1 with the condition x,z < 0 for all x > 0 and z 
> 0 if h > 0, in the x-y plane for E3 with the condition  
x,z < 0 for all x > 0 and y > 0 if h,b < 0 and in the 
same way E4 can be globally asymptotically stable in 
x-y,y-z and x-z planes.

We have performed some numerical simulation to 
study the role of harvesting on the prey predator system 
and we illustrate the dynamical and complex features of 
the model using MATLAB. In the starting, we fi xed all 
parameters to ensure that the three classes of popula-
tions survive. Numerical simulations explain the effect 
of the parameters on the complex behavior of a given 
system (2.1).

(i) Let us consider following set of parameters,

a = 1.0; b = 1.5; c = 0.1; h = 0.5; e = 1.5;f=0.1;g=0.7,=0.91,

With initial condition x (0) =0. 8, y (0) =1. 70, z (0) =0. 
75. For this set of parameter, we get the following vari-
ation of the population of the healthy predator, suscep-

tible prey and infected prey with respect to time, which 
isillustrated below in fi gure 4 (a) and fi gure 4 (b).

(ii) Let us consider following set of parameters,

a = 1.0; b = 1.5; c = 0.1; h = 0.5; e = 1.5;f=0.1;g=0.1;=0.91;

With initial condition x (0) =0. 8, y (0) =1. 70, z (0) =0. 
75. For this set of parameter, we get the following varia-
tion of the population of the healthy predator, suscepti-
ble prey and infected prey with respect to time, which is 
illustrated below in fi gure 4(c) and fi gure 4(d).

It is observed that effective harvesting of diseased 
prey, increase the growth rate of the susceptible predator 
population. If the value of harvesting rate g≥0. 7 then 
the infected prey population decreases more rapidly, 
but if the value of g<0.7 then infected prey population 
decreases slowly that shown in fi g. 4(a), 4(b), 4(c) and 
4(d) respectively. In this analysis, we have also observed 
that the whole population of the susceptible predators 
may be wiped out due to increase in the number of the 
susceptible and infected preys. This result shows that 
the system is biologically well behaved. In another case 
when the diseased prey can be washed out, a rational 
use of the stability criterion of non-zero equilibrium 
point may be useful for ecological balance. In this case, 
the parameters of the system should be regulated in such 
a way that stability criterion of non-zero equilibrium is 
satisfi ed but infected prey remains low enough. Some-
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FIGURE 4c. Represents the effect of low harvesting on the population of the infected prey as time 
goes on.

FIGURE 4d. Represents the effect of low harvesting on thepopulation of the healthy predator, suscep-
tible prey and infected prey as time goes on.

times, harvesting became a suitable option for preven-
tion of the population rather than the vaccination strate-
gies. Therefore, effective harvesting became essential for 
the survival of the population.

CONCLUSION

A non-linear system based on the epidemic SIR model 
has been studied and discussed. Conditions for local 
and global stability at various equilibrium points were 
obtained. We have illustrated the effective harvesting 
of diseased prey in the whole system and reveal that 
the increases of predator population when the harvest-
ing rate of infected prey population increases. We may 
conclude that effective harvesting of diseased prey may 
be used as a biological control for the spread of dis-
ease. And maintain balance in these species populations 
by preventing in the predator population to extinction. 
Finally, some numerical simulations illustrate and sup-
plement our theoretical analysis by considering different 
parameter values. Low harvesting and high harvesting 
rates play an important role in this analysis. Global sta-
bility of equilibrium E0 shows that disease free equilib-
rium always exists. In future other effecting condition 

can be used to save the predator population by introduc-
ing alternative food for predator rather than diseased 
prey.
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