
ABSTRACT
Peyronellaea pinodella BL-3/4, an ascomycete was isolated from the humus of municipal solid waste. The novelty 
regarding the present study is that, to date the isolated fungal strain has not been explored for laccase production 
and statistical optimization of medium parameters for enhanced laccase production. Efficient laccase production 
from this fungal strain was carried out by optimizing fermentation medium using the design of experiments 
through submerged fermentation. Initially, the medium components were screened using Plackett Burman design. 
A five-level-four factor central composite design was applied to statistically specify the effect of important 
process variables, namely glucose, orange peelings, peptone and copper sulphate. The significance of the factors 
and their interactions were verified by using the analysis of variance with 95% confidence level (p<0.05). Among 
the variable screened, orange peelings, glucose, peptone and copper sulfate were found significant in laccase 
production. The central composite design of response surface methodology revealed that the best combination 
of fermentation medium for maximum laccase production is 2% glucose, 1% orange peelings, 0.5% peptone and 
0.001 mg% copper sulphate with maximum laccase production of151.5 U/mL. Statistical optimization leads to 
2 fold higher laccase production than the unoptimized media in the present study. Purification by ammonium 
sulphate precipitation followed by dialysis and gel filtration chromatography leads to 17.5 fold purification with 
14.1% yield of pure laccase. Purified enzyme was identified as 60 kDa monomeric protein by 12% sodium dodecyl 
sulfate-polyacrylamide gel electrophoresis. The production of laccase by P.pinodella BL-3/4 was also confirmed 
by the evaluating presence of copper in the purified fraction. Presence of copper in structure of purified laccase 
was confirmed by UV-visible spectroscopy, atomic absorption spectroscopy and scanning electron microscopy 
coupled with energy dispersive X-ray analysis. Use of orange peelings as valuable substrate by P. pinodella, make 
the fungi a better candidate for large scale production of laccase as well as for bioremediation, when compared 
to all other reported fungi.
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INTRODUCTION

The major structural component of all plant is a renewable 
organic material, lignocelluloses (Dashtban et al., 2009). 
Many industries like forestry, pulp and paper, agriculture, 
and food generates lignocellulosic waste during 
processing.  Such wastes are also present in municipal 
solid waste (MSW), and animal wastes (Kim and Dale, 
2004, Kalogo et al., 2007, Batista Meneses et al., 2020). 
Among all three different components of lignocelluloses, 
lignin is a natural heterogeneous biopolymer and highly 
recalcitrant in nature (Wong 2009, Anwar et al., 2014, 
Brenelli et al., 2018, Polo et al., 2020).

Due to complexity in structure, enzymes of most 
microorganisms are not able to degrade lignin. 
Ligninolytic enzymes are the group of enzymes 
that degrade lignin efficiently. Laccase (EC 1.10.3.2, 
para-diphenol: oxygen oxidoreductase) is one of the 
most important enzyme among group of ligninolytic 
enzymes. Having diversity in substrate specificity 
as well as catalytic active site of copper atom  
(Pointek et al., 2002), laccases non specifically catalyze 
oxidation of wide range of phenolic compounds, 
aromatic amines as well as non phenolic compounds 
with the four-electron reduction of molecular oxygen 
to water (Vishwanath et al., 2014, Jaber et al., 2017, 
Agrawal et al., 2018, Janusz et al., 2020).

The non specific catalytic ability makes laccase highly 
suitable biocatalysts for various Biotechnological 
applications. Such application includes effluents 
treatment and waste detoxification, food industry, 
paper and pulp industry, textile industry, synthetic 
chemistry, cosmetics, soil bioremediation, pesticide or 
insecticide degradation, organic synthesis, biosensor 
and analytical applications. Fungal laccases also play an 
important role in spore formation, pigment production, 
fruiting body formation, and plant pathogenesis  
(Sadhasivam et al., 2008). Laccase was first extracted and 
described by Yoshida (1883) from the sap of the Japanese 
lacquer tree, Rhus vernicifera. Laccases mostly been 
isolated and described from the white rot fungi, including 
Trametes versicolor, Agaricus bisporus, Coriolus spp., 
Pleurotus ostreatus, Phlebia radiata, Pycnoporus 
cinnabarinus and Coprinus cinereus. and few from the 
ascomycete group. Basidiomycetes are known laccase 
producers under both sub merged fermentation (SmF) 
(El-Batal et al., 2015) as well as solid state fermentation 
(SSF) (Patel and Gupte, 2016). Though SSF is preferred 
over SmF in terms of higher production yield, robust 
control of physical process parameters is difficult thus 
imposing problem in product recovery and scale up of 
laccase production.

Scale up needs right choice of the nutritive substrate 
in the culture medium that significantly decreases the 
total production costs and reduces the time period for 
expression of enzyme. Carbon, nitrogen and copper 
sources are the main nutritional parameters that regulate 
the level of gene transcription for laccase expression. 
Strain improvement to obtain higher laccase yield by 
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single parameter approach is simple but laborious and 
time consuming and often do not tell about interaction 
effects between the medium parameters. Statistical 
optimization by design of experiments (DOE) concepts 
is the only solution to search such key factors and study 
interaction between medium parameters in a very few 
experiments. Plackett-Burman design (PBD) [Plackett 
and Burman, 1946] is most widely used experimental 
design for initial screening of such significant factors 
from multiple nutritional parameters and optimizes only 
the positive and main effects on laccase production. 
The important and positive factors obtained from the 
screening experiments could be further optimized by 
employing response surface methodology (RSM) that 
enables the study of interaction effects between different 
variables.

Few reports are available on the statistical optimization 
of media components for the production of laccase 
in different fungal strain of division ascomycota i.e. 
Trichoderma harzianum strain (Gao et al, 2013, Bagewadi 
et al., 2017), Aspergillus flavus (Ghosh and Ghosh, 2017). 
Moreover, laccase production during dye degradation 
has only been reported from Peyronellaea prosopidis 
(Bankole et al., 2018). To the best of our knowledge there 
are no reports on laccase production and use of statistical 
approach for its optimization from novel fungal strain 
Peyronellaea pinodella BL-3/4. The main objective of 
the study is to statistically optimize laccase production 
by fungal strain Peyronellaea pinodella BL-3/4 using 
DOE concept.

MATERIAL AND METHODS

A newly isolated fungal strain Peyronellaea pinodella 
BL-3/4 (Gene bank Accession Number: KT833620) 
prescreened (using lignin model compounds) from the 
humus soil of composted MSW was used in this study. 
This genus of ascomycetes has not been explored for 
any enzyme production specifically laccase production. 
The fungal strain was grown and maintained on Mineral 
salt- glucose peptone (MS-GP) medium according to the 
method of Patel and Bhaskaran, (2020). Ground orange 
peelings were employed as support-substrates as it is the 
best source for improving laccase productivity during 
single parameter optimization studies performed with 
Peyronellaea pinodella BL-3/4. The enzyme production 
was performed in MS-GP medium supplemented with 
0.5% orange peelings (Patel and Bhaskaran, 2020). The 
enzyme was extracted by filtering fermentation broth and 
the filtrate was used as the crude enzyme preparation. 
Extracellular laccase activity of crude enzyme preparation 
was determined spectrophotometrically with 2.5 mM 2, 
2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) 
(ABTS) (SIGMA) by method of Silva et al. (2007) and 
Patel and Bhaskaran, (2020).

Screening of factors by PBD is commonly employed 
to select significant factors in a production medium 
with lesser experimentations (Rajendran et al., 2007). 
For laccase optimization by Peyronellaea pinodella 
BL-3/4, factors considered for screening by PBD were 

 956 Statistical Optimization and Partial Purification of Laccase	       		                 BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS



orange peelings (A), glucose (B), peptone (C), ammonium 
acetate (D), KH2PO4 (E), MgSO (F), CaCL2 (G) MnSO4(H) 
and CuSO4 (J). Selected factors were experimentally 
screened with 12 trials in triplicates at 2 stages, high (+1) 
and low (- 1) (Table 1). The laccase activity is mean of 3 
independent experiments. PBD is based on the first-order 
polynomial model shown in equation 1.

Y = β0+∑ βiXi                (1)

Where Y is the response (laccase production U/mL), β0 
is the model intercept, βi is the linear coefficient, and 
Xi is the level of the independent factor (i = A, B, C, D, 
E, F, G, H,  J).

The significant factors were identified by the analysis 
of the PBD experiments and their levels were further 
optimized by Central Composite Design under RSM. 
Each selected factor was studied at five different levels 
coded as –α, −1, 0, +1, and +α in a total of (α= (24)1/4  

= 2.000) 30 runs, with two blocks (Bhamare et al., 2018). 
The laccase yield U/mL as the measured response (Y) was 
fitted by second-order polynomial equation 2.

Y = βo+β1A+β2B+β3C +β4D

+β11A2 +β22B2 +β33C2+β44D2 

+β12AB+β13AC +β14AD+β23BC +β24BD+ β34CD   
(2)

Where, Y is the measured response (laccase production 
U/mL), A, B, C and D are independent factors, β1, β2, 
β3, β4,  are linear coefficients, β 11, β 22, β 33, β 44  are 
quadratic coefficients and β 12, β 13, β 14, β 23, β 24, β 
34 are  cross product coefficients of the model.

This design was used to evaluate the main effects, 
interaction effects and quadratic effects to optimize the 
levels of parameters for enhancing laccase production. 
The fitted polynomial equation was expressed as 
three-dimensional response surface plots and counter 
plots to find the concentration of each factor for 
maximum laccase production (Sondhi and Saini, 2019). 
The statistical significance of the model terms 
was studied using analysis of variance (ANOVA). 
The significance of the model was assessed using Fisher’s 
‘F’ test and its corresponding probability ‘p’. Design-
Expert Design-Expert version 10.0.6.0 software Version 
10.0.6.0, Stat-Ease, Minneapolis, USA. was used as a tool 
to design experiments of statistical optimization and all 
statistical analysis.

Purification of laccase was carried out by growing 
the fungal culture in statistically optimized medium. 
The fermentation broth was centrifuged at 3000 x 
g for 10 min at 40C for crude laccase preparation.  
Obtained supernatant was precipitated by ammonium 
sulphate in the range of 0-70% (w/v) at low temperature. 
Precipitated protein was dialyzed overnight with 0.1 M 
sodium acetate buffer using dialysis membrane of 10 
kDa (Hi-Media Laboratories, India). Total protein content 

(method of Lowry et al., 1951) and laccase activity of 
the precipitated samples and dialyzed samples were 
determined according to method mention in laccase 
enzyme assay.

Concentrated dialyzed protein sample (1.5 mL) was 
applied to sephacryl s-100 HR (Amersham biosciences, 
USA) column (1.8x30 cm) pre-equilibrated with sodium 
phosphate buffer (pH 6.0). Protein was eluted with the 
same buffer having 0.15 M NaCl at a flow rate of 0.4 ml/
min. A total of 30 fractions were collected and assayed 
for protein content and laccase activity. The purity of 
the laccase enzyme was confirmed on 12% sodium 
dodecyl sulfate-polyacrylamide gel electrophoresis 
(SDS- PAGE) according to the method of Laemmli (1970).  
Prestained protein molecular weight marker  
(Genei, Bangalore, India) [Phosphorylase b (97.4 kDa), 
bovine serum albumin (66 kDa), ovalbumin (43 kDa), 
carbonic anhydrase (29 kDa), lacto globulin (18.4 kDa)] 
was loaded along with crude, dialyzed and gel filtered 
protein samples to know the approximate molecular mass 
of laccase enzyme. 

Protein bands on SDS-PAGE gels were stained with 
coomassie brilliant blue G-250 and compared with 
standard protein. The presence of Cu2+, Zn2+, Fe2+ 
and Mn2+ in purified laccase were determined and 
quantified by Atomic absorption spectroscopy (AAS) 
(SL 194; ELICO, India). Spectroscopic characterization  
(Schimadzu UV 1800) of purified laccase was performed 
to confirm type of Cu centers. The presence of Cu2+ in 
purified laccase was confirmed by scanning electron 
microscopy coupled with energy dispersive X-ray (SEM/
EDAX) analysis (Model: ESEM EDAX XL-30; Philips, 
Netherlands).

RESULTS AND DISCUSSION

The design matrix generated by design expert statistical 
software for the screening of variables and corresponding 
responses in terms of laccase enzyme yield is shown 
in Table 1. Highest laccase production (132.77 U/mL) 
was observed in a 9th run with a high level of glucose. 
Variation in laccase production among the different 
combinations occurred due to the influence of the factors 
at high and low levels as shown in Table 1. Parameters 
with statistically significant effects were identified using 
Fisher’s test for ANOVA. ANOVA for laccase production 
indicated ‘F-value’ of 95.33, which implied that the model 
was appropriate. Model terms having ‘Prob>F’ values less 
than 0.05 are considered to be significant and Prob>F’ 
values greater than 0.1 indicates the insignificant model 
terms (Niladevi et al., 2006, Sondhi and Saini, 2019). 

Factors having a confidence level greater than 95% were 
considered to have a significant effect on the response 
and were selected for further studies. In present study 
glucose was found to be the most influencing factor 
(p<0.0008), followed by CuSO4 (p<0.0013), orange 
peelings (p<0.0018) and peptone (p<0.0065) in to the 
medium (Table 2). Positive effect of glucose and copper 
on laccase production has been reported recently  

Patel & Bhaskaran

BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS		                           	                 Statistical Optimization and Partial Purification of Laccase 957



Patel & Bhaskaran

(Karp et al., 2015, Ghosh and Ghosh, 2017, Bhamare 
et al., 2018). Although ammonium acetate and MnSO4 
were significant model terms, they exerted a negative 
effect on laccase response. According to model KH2PO4, 
MgSO4 and CaCl2 had no significant effect on laccase 
production as shown in Figure 1.

The first-order model was fitted to the experimental 
results with the following final equation 3 in terms of 
coded factors:

Laccase activity = +65.91 +9.97* A +13.00* B +6.35* C 
-6.42* D - 3.37* H +11.05 * J ….. (3)

Where A, B, C, D, H and J are coded value of orange 
peelings, glucose, peptone, ammonium acetate, MnSO4 
and CuSO4 respectively.

The  positive effects of the four factors namely glucose, 
orange peelings, peptone and CuSO4 on laccase 

production were studied using CCD of RSM to optimize 
their levels for maximum enzyme yield. The levels 
of other factors kept constant during experiments. 
Experimental study based on a CCD experimental design 
was performed according to Table 3 and 4. These factors 
and their levels were chosen based on the preliminary 
experiments. The 30 experimental trials reveal the 
different combinations of the factors. Maximum laccase 
response (125.0 U/mL) was obtained in run 30 having a 
maximum concentration of glucose (2.9%).  Fisher’s F 
test for the analysis of variance of data indicated that 
the model was highly significant with Prob>F’ value of 
less than 0.0001 and F-value of 17.14 (Table 5). A not 
significant lack of fit showed that the quadratic model 
was valid for the present study. Among all factors and 
interactions considered in the experimental design, 
A, B, D2 and AD were statistically significant at 95% 
confidence level. The value of R2 (0.8903) indicated a 
good agreement between the experimental and predicted 
values of laccase yield.

	 Factor	 Factor	 Factor	 Factor	 Factor	 Factor	 Factor	 Factor	 Factor	 Factor	 Factor	Response
	 A	 B	 C	 D	 E	 F	 G	 H	 J	 K	 L	
Run	 Orange 	 Glucose	 Peptone 	Ammonium	KH2PO4	 MgSO4	 CaCl2	 MnSO4	 CuSO4	 Dummy	Dummy	Laccase
	 Peel 	 (gm%)	 (gm%)	 Acetate 	 (gm%)	 (mg%)	 (mg%)	 (mg%)	 (mg%)			   activity
	 (gm%)			   (gm%)
												          
1	 0.2	 1	 0.5	 0.1	 0.05	 0.5	 0.5	 0.2	 0.25	 1	 1	 59.16
2	 0.2	 0.5	 0.5	 0.05	 0.1	 1	 0.5	 0.2	 0.5	 1	 -1	 84.16
3	 0.2	 0.5	 0.2	 0.05	 0.05	 0.5	 0.5	 0.1	 0.25	 -1	 -1	 32.91
4	 0.5	 1	 0.2	 0.05	 0.05	 1	 0.5	 0.2	 0.5	 -1	 1	 79.58
5	 0.5	 0.5	 0.2	 0.05	 0.1	 0.5	 1	 0.2	 0.25	 1	 1	 50.41
6	 0.5	 0.5	 0.5	 0.1	 0.05	 1	 1	 0.2	 0.25	 -1	 -1	 43.33
7	 0.2	 0.5	 0.2	 0.1	 0.05	 1	 1	 0.1	 0.5	 1	 1	 46.66
8	 0.5	 1	 0.2	 0.1	 0.1	 1	 0.5	 0.1	 0.25	 1	 -1	 89.16
9	 0.5	 1	 0.5	 0.05	 0.05	 0.5	 1	 0.1	 0.5	 1	 -1	 132.77
10	 0.2	 1	 0.2	 0.1	 0.1	 0.5	 1	 0.2	 0.5	 -1	 -1	 58.6
11	 0.5	 0.5	 0.5	 0.1	 0.1	 0.5	 0.5	 0.1	 0.5	 -1	 1	 59.99
12	 0.2	 1	 0.5	 0.05	 0.1	 1	 1	 0.1	 0.25	 -1	 1	 54.16

Table 1. PBD matrix of nine variables (A-H and J) and two dummy variables (K and L) 
along with observed response.

Figure 1: Positive and negative effect of different factors 
on laccase production by Peyronellaea pinodella BL-3/4 as 
screened with a PBD.

To evaluate the main effects, interaction effects and 
quadratic effects of the selected factors on the laccase 
yield, second-order polynomial equation was derived 
equation 4:

Y= 58.8112 + 15.7583 A + 19.825 B + 1.39917 C + 
-4.15833 D + 2.60875 AB + -11.4312 AD + -0.18 BD + 
-0.9975 CD + -10.1603 D2

Where Y is the predicted response and A, B, C, D are 
coded factors.

The equation can be used to make predictions about 
the response for given levels of each factor.  A positive 
linear coefficient value for A and B indicates laccase 
production was increased with increased concentrations 
of orange peelings (up to 1%) and glucose (up to 2.9%) 
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glucose concentration was low (0.2%) Ghosh and Ghosh 
(2017) studies have revealed that although glucose 
supports the highest specific growth rate, specific rate 
of laccase production was significantly reduced. This 
is not supported by the findings of the present study 
where maximum laccase activity was obtained at 2.9% 
glucose with good mycelial growth. Bhamare et al. 
(2018) reported less laccase production even at at the 9th 
day of incubation. More yield in less incubation period  
(4 days) indicated the metabolic potential of fungus 
and its suitability for cost efective and economized 
production of enzyme at industrial scale.

The interactive effect of various factors on laccase 
production by Peyronellaea pinodella BL-3/4 was 
investigated by plotting the contour plots and three-
dimensional response surface curves against any 
two independent variables while keeping the third 
independent variable at the ’0’ level. Studying the 
interaction among two variables provides knowledge 
of the optimum concentration of individual factor for 
highest laccase yield. The interactive effect of response 
surface quadratic model reveals that interaction among 
factors AB, BD and CD are insignificant whereas AD 
is significant (Table 5). The response surface curve for 
interactive effect of AD is shown in Figure 2. The yield 
was found to be increasing with the increase in orange 
peelings (A) concentration with limited level of peptone 
(D). But increasing the concentration of peptone inhibits 
laccase production even in the presence of higher 
concentration of orange peelings. 
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as shown in Table 3 and 4. The response obtained at 
different level of orange peelings clearly indicate that 
growth and enzyme yield was high at high concentration 
of orange peelings (1%) and very low when orange 
peelings concentration was low (0.1%) or absent in 
the medium. However results of present study disagree 
with report of the Ire and Ahuekwe (2016) on use of 
0.1% orange peelings for maximum laccase production 
by Pleurotus ostreatus. Moreover, laccase activity was 
high at high level of glucose (2.9%) and low when 

	 F	 p-value
Source	 Value	 Prob > F	

Model	 95.33	 0.0016	 Significant
A-Orange Peel	 113.89	 0.0018	
B-Glucose	 193.72	 0.0008	
C-Peptone	 46.30	 0.0065	
D-Ammonium Acetate	 47.32	 0.0063	
H-MnSO4	 13.00	 0.0366	
J-CuSO4	 140.08	 0.0013	
K-Dummy 1	 142.46	 0.0013	
L-Dummy 2	 65.90	 0.0039	
			 
The model R2 Value: 0.9961, The Predicted R2 Value:  0.9373 
and the adjusted R2 value: 0.9856; Coefficient of Variance 
(CV): 4.91

Table 2.ANOVA table for selected factorial model in PBD.

		
	 Factor A	 Factor B	 Factor C	 Factor D		  Actual Response 
Block	 Run	 Orange Peel	 Glucose	 CuSO4	 Peptone	 Laccase activity
		  gm%	 gm%	 mg%	 gm%	 U/ml

Block 1	 1	 0.55	 1.1	 0.5625	 0.55	 52
Block 1	 2	 1	 2	 1	 1	 56
Block 1	 3	 1	 2	 0.125	 1	 51.24
Block 1	 4	 0.1	 0.2	 1	 0.1	 1.33
Block 1	 5	 0.1	 2	 0.125	 0.1	 27.49
Block 1	 6	 0.55	 1.1	 0.5625	 0.55	 50.83
Block 1	 7	 1	 0.2	 0.125	 1	 14.16
Block 1	 8	 1	 0.2	 1	 0.1	 45
Block 1	 9	 0.1	 0.2	 1	 1	 11.8
Block 1	 10	 0.1	 2	 1	 0.1	 35
Block 1	 11	 0.55	 1.1	 0.5625	 0.55	 53.74
Block 1	 12	 0.1	 2	 1	 1	 45
Block 1	 13	 1	 0.2	 1	 1	 17.49
Block 1	 14	 0.1	 0.2	 0.125	 1	 9
Block 1	 15	 0.1	 2	 0.125	 1	 45.41
Block 1	 16	 1	 2	 1	 0.1	 99
Block 1	 17	 0.1	 0.2	 0.125	 0.1	 8
Block 1	 18	 1	 2	 0.125	 0.1	 86.66
Block 1	 19	 0.55	 1.1	 0.5625	 0.55	 43.33
Block 1	 20	 1	 0.2	 0.125	 0.1	 48.74

Table 3. Central composite experiments design matrix (Block 1) for laccase production 
from Peyronellaea pinodella BL-3/4.

BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS		                           	                 Statistical Optimization and Partial Purification of Laccase 959



This is in accordance with Hammel (1997), who 
confirmed that the ligninolytic enzymes are produced 
during the secondary metabolism under conditions 
of limited nitrogen. Optimum concentration of each 
factor was revealed by performing confirmation run 
in triplicates. Actual mean laccase activity of 151.5 
U/mL was obtained with optimum concentration of 
orange peelings-1.0%, Glucose-2.0%, Peptone-0.5% 
and CuSO4-1.0 mg% against predicted laccase activity 

(139.0 U/mL) by design expert software. Extracellular 
laccase produced by Peyronellaea pinodella BL-3/4 was 
purified by ammonium sulphate precipitation followed 
by dialysis and gel filtration chromatography. Laccase 
purification at different steps is summarized in Table 5. 
Enzyme was purified to 6.01 fold with 85.1% yield after 
dialysis. Final purification with sephacryl s-100 HR gel 
filtration chromatography leads to 17.5 fold purification 
with 14.1% yield of pure laccase.

		  Factor A	 Factor B	 Factor C	 Factor D	 Actual Response 
Block	R un	O range Peel	G lucose	 CuSO4	 Peptone	 Laccase activity
		  gm%	 gm%	 mg%	 gm%	 U/ml

Block 2	 21	 0.55	 1.1	 0.5625	 0.55	 76.66
Block 2	 22	 1.45	 1.1	 0.5625	 0.55	 99.16
Block 2	 23	 0.55	 1.1	 0.5625	 -0.35	 35.83
Block 2	 24	 -0.35	 1.1	 0.5625	 0.55	 39.19
Block 2	 25	 0.55	 1.1	 1.4375	 0.55	 64.16
Block 2	 26	 0.55	 -0.7	 0.5625	 0.55	 23.74
Block 2	 27	 0.55	 1.1	 -0.3125	 0.55	 75.83
Block 2	 28	 0.55	 1.1	 0.5625	 0.55	 64.99
Block 2	 29	 0.55	 1.1	 0.5625	 1.45	 24.99
Block 2	 30	 0.55	 2.9	 0.5625	 0.55	 125

Table 4. Central composite experiments design matrix (Block 2) for laccase production from 
Peyronellaea pinodella BL-3/4.

	 F	 p-value
Source	 Value	 Prob > F	
			 
Model	 17.14	 < 0.0001	 significant
A-Orange Peel	 43.68	 < 0.0001*	
B-Glucose	 69.13	 < 0.0001*	
C-CuSO4	 0.34	 0.5643a	
D-Peptone	 3.04	 0.0973a	
AB	 0.80	 0.3829a	
AD	 15.32	 0.0009*	
BD	 3.799E-003	 0.9515a	
CD	 0.12	 0.7364a	
D2	 21.79	 0.0002*	
Lack of	 0.83	 0.6517	 not 	
Fit			   significant

R2 = 0.8903; adjusted R2 = 0. 8384; Predicted R2=0.7630; 
probability P *(P<0.05) corresponds to Significance; Pa 

corresponds to insignificance 

Table 5: Analysis of variance for response surface quadratic 
model

Figure 2: Response surface curve showing the interactive 
effect of orange peel (A) and peptone (D) on laccase 
production.

AAS studies showed presence of copper in laccase 
active fraction (6.8 mg/mL) where as iron, zinc and 
manganese were absent. The type of copper catalytic 
centre was investigated spectrophotometrically by UV-
Visible spectrum. The UV-Visible spectrum (Figure 4) 

shows presence of a shoulder at 330 nm. Shoulder at 
330 nm indicates type III binuclear copper (Solomon 
et al., 1994, Solomon et al., 1996) having two electron 
accepting site, which is characteristic to the yellow 
laccases. Absorption peak around 600 nm confirms 
presence of type 1 copper, which is characteristic of 
blue laccases (Bertrand et al., 2002, Morozova et al., 
2007, Madhavi and Lele 2009). Type III Cu exhibits a 
weak absorption at 600 nm (Palmieri et al., 1997). In 
present study, absence of peak around 600 nm (Figure 4) 
conferred absence of type 1 copper in purified laccase and 
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presence of type III copper in purified laccase. Evidence 
was also provided for instability of type I copper in all 
fungal laccases (Rogalski and leonowicz, 2004). Most 
of the laccases are blue containing four copper atoms 
per enzyme molecule. Reports of Giardina et al. (2009) 
suggests that formation of yellow laccase is due to altered 
oxidation state of active copper centre during binding of 

the lignin degradation aromatic products which in turn 
results in the reduction of type 1 copper and loss of the 
characteristic blue copper of laccase. SEM-EDAX analysis 
was performed to confirm presence of copper. Figure 5 
shows scanning electron microscopic image of purified 
laccase. Peak at 8 KeV in SEM-EDAX spectrum confirmed 
presence of copper in structure of laccase (Figure 6).

Purification	 Total	 Total 	 Specific 	 Purification	Yield 
step	 activity	 protein	 activity	 fold	 (%) 
	 (U)	 (mg)	 (U/mg)
					   
Crude filtrate	 13500	 633	 21.3	 1	 100
Ammonium sulfate	 11491	 89.7	 128.1	 6.01	 85.1
precipitation and 
Dialysis
Gel filtration	 1900	 0.85	 2235.3	 17.5	 14.1
chromatography

Table 6. Purification of laccase from Peyronellaea pinodella BL-3/4.

Figure 3: SDS-PAGE of purified laccase from Peyronellaea 
pinodella BL-3/4. Lane 1: Standard Protein molecular 
weight marker, Lane 2: Crude Laccase, Lane 3: Dialyzed 
Laccase and Lane 4: Purified Laccase

Figure 4: UV-Visible spectrum of purified laccase

Figure 5: Scanning electron microscopy of purified laccase 
from Peyronellaea pinodella BL-3/4.

Figure 6: Energy dispersive X-ray (SEM/EDAX) spectrum 
showing presence of copper in purified laccase from 
Peyronellaea pinodella BL-3/4

CONCLUSION

The present study has explored the potential of 
Peyronellaea pinodella BL-3/4, a newly isolated 

ascomycetes to produce laccase under optimal medium 
components designed by statistical software through 
submerged fermentation. Statistical optimization has 
provided best combinations of medium components while 
considering interaction between medium components 
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studied. The usage of design expert software reduces 
the resources required and also saved time. Optimization 
leads to two fold increases in laccase production 
compared to control using orange peelings (1%) as a 
lignocellulosic substrate. Laccase yield of 14.1% was 
achieved in final purification with sephacryl s-100 HR 
gel filtration chromatography. The production of laccase 
by Peyronellaea pinodella BL-3/4 was also confirmed by 
the evaluating presence of copper in the purified fraction. 
SEM-EDAX analysis confirms the presence of copper 
in purified laccase. Further research on Peyronellaea 
pinodella BL-3/4 can be explored to scale up the laccase 
production for its vivid industrial applications. 
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