
ABSTRACT
BiOCl Crystal's electronic band structures, density of state (DOS), and optical properties  have been studied using 
the Local Density Approximation (LDA) density function theory. The electronic band structure obtained shows that 
BiOCl crystal has a forbidden band gap of 2.45 eV indirect. Using the LDA, structural optimization for BiOCl was 
carried out. The outcome of BiOCl's structure optimization was contrasted with the experimental findings, and it 
was found to be in strong agreement with these tests. It calculates the linear photon-energy-dependent dielectric 
functions and some optical properties, such as the function of energy-loss, the effective number of valance electrons 
and the effective optical dielectric constant
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INTRODUCTION

Bismuth oxychloride (BiOCl), a member of compounds 
with the general formula A= As, Sb, Bi, B= O, S, Se and 
X= Cl  is a wide bandgap semiconductor with a tetragonal 
pbFCl-type structure (space group p4/nmm: no: 129) 
(Keramidas et al, 1993; peng et al, 2009; Zeng et al, 
2019). This crystal has 2 BiOCl molecules in a unit cell. 
Therefore, this compound has a complex structure with 
18 valance electrons per unit cell.

The BiOCl unit cell is shown in Figure 1 (Zhang et al, 
2006) and atomic positions are given in the unit cell in 

Table 1 (Keramidas et al, 1993). The structure of crystals 
can be  derived from the structure of the fluorite (CaF2). 
The Bi atom is paired with four O atoms in one base 
and four Cl atoms in another. The atom O is coordinated 
tetrahedrally to four atoms Bi. The Cl atom is bound in a 
planar square with four Bi atoms to form a pyramid, with 
its non-bonding electrons pointing to the other side of the 
square. As shown in Figure 1, through the Cl atoms along 
the c- axis, the (BiOCl) layers are stacked together by the 
nonbonding (van der Waals) interaction; the structure is 
therefore not heavily packed in this direction (Zhang et 
al, 2006; Sun et al, 2019).

Within the local density approximation (LDA) by 
Zhang et al, 2006, the electronic structure of BiOCl was 
calculated using the tight-binding linear muffin-tin 
orbital (TB-LMTO) method (Li et al, 2018). The calculated 
indirect nature is in agreement with the experimentally 
observed linear relationship between and (where and 
represent, respectively, the absorption coefficient and 
photon energy) although the calculated band gap is 
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relatively narrow (Zhang et al, 2006; Li et al, 2017). 
BiOX's electronic band structure (X = F, Cl, Br, and I) 
was determined by Huang at al, 2009, using DFT method 
within GGA scheme. The atomic charges and bond 
orders were analyzed using the Mulliken population 
analysis (Mulliken, 1955; Srivastava et al, 2014; Sharma 
et al, 2015; Segall et al, 1996; Segall et al, 1196; Sun et 
al, 2018), describing the spatial distribution of orbital 
density (Huang at al, 2009) as well. no ab initio general 
possible measurements of BiOCl's optical properties 
have been documented in depth, as far as we know  
(Tripathi, 2019; Wang et al, 2019).

pseudopotential activates the interactions between the 
electrons and core ions. The basis set is based on the 
Sankey et al, 1989; finite range pseudoatomic orbital’s 
(pAO's), expanded to include multiple-zeta decay  
(Heidari et al, 2020; Canpolat et al, 2019).

We have separately generated atomic pseudopotentials 
for Bi, O and Cl, using the atomic configurations 5s25p3, 
2s22p4 and 3s23p5, respectively. The cut-off radii are 
taken as 2.70, 1.15 and 1.65 a.u for current atomic 
pseudopotentials. For the Bi, O, and Cl channels s, p, 
d, and f respectively. SIeSTA measures the potential of 
self-consistency in real space on a grid. In terms of an 
energy cut-off ec, the fineness of this grid is calculated 
in analogy to the energy cut-off if the basis set contains 
plane waves. Here, we find an optimum value of around 
300 ry  for BiOCl by using a double-zeta plus polarization 
(DZp) orbital’s basis and the cut-off energies between 
50 and 450 ry with different base sets. 98 k-points 
for BiOCl were found to be sufficient for the final 
calculations to obtain the total energy with an accuracy 
of approximately 1 meV/atoms (paudel et al, 2018).

RESULTS AND DISCUSSION

Structural Optimization: All physical characteristics 
contribute to total strength. For example, a crystal’s 
equilibrium lattice constant is the lattice constant which 
minimizes total energy. If the total energy is measured, 
any physical property can be determined that is related to 
total energy. First, the equilibrium lattice parameter was 
determined by minimizing the total energy of the crystal 
determined for the different lattice constant values by 
means of Murnaghan's, 1994; state equation (eOS) as 
shown in Figure 2, and the result is shown in Table 2 
along with the experimental and theoretical values. For 
tetragonal structures the lattice parameters for BiOCl are 
found to be a = b=3.88 which c=7.314, and are in good 
agreement with the experimental and theoretical values. 
We have used the computed lattice parameter in all of 
our calculations (Sun et al, 2019).

Atoms x Y Z

Bi 0.25 0.25 0.1714(3)
O 0.25 0.75 0
Cl 0.25 0.25 0.6459(25)

Table 1. Fractional atomic coordinates (Å) for BiOCl 
(Keramidas et al, 1993)

Figure 1: The unit cell of BiOCl viewed along (100) (Zhang 
et al, 2006)

In the present work we  have investigated the electronic 
band structure, total state density (DOS), structure 
optimization, and photon-energy-dependent optical 
properties of the BiOCl crystal using a pseudo potential 
approach based on the local density approximation 
(LDA) density functional theory (DFT) (Kohn et al, 1965;  
Liu et al, 2019).

MATERIAL AND METhODS

For this research, the SIeSTA (Spanish Initiative for 
electronic Simulations with Thousands of Atoms) code 
(Ordejon et al, 1996; Soler et al, 2002; Liao et al, 2020; 
Fitzpatrick et al, 2020) was used to measure BiOCl 's 
energy spectra and optical. In the LDA parameterized by 
Ceperley et al, 1980; it solves the quantum mechanical 
equation for the electron inside the DFT method. 
Separable Troullier et al, 1991; norm-conserving 

Figure 2: Energy versus volume curve of BiOCl
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Electronic Band Structure: In the first Brillouin Zone (BZ) 
of the tetragonal system, the electronic band structures 
of BiOCl crystals were determined along high symmetry 
directions and are shown in Figure 3. The band structures 
were calculated along the special lines which connect the 
high symmetry points   (1/2, 0, 0), X (1/2, 0, 0), Z (0, 0, 
1/2), M (1/2, 1/2, 0), r (1/2, 0, 1/2) and A (1/2, 1/2, 1/2) 
in the k-space (Zhang et al, 2019).

As can be seen in Figure 4, the top of the valance band is 
placed between the Z-r points near the r point and the 
bottom of the conductive band is located at the nearly 
midway point between the BZ's  and Z points. Therefore 
the BiOCl band gap is indirect with the value 2.45 eV the 
lowest direct band gap value reported for BiOCl is 2.77 
eV(Tripathi et al, 2017; 2016; 2015; 2016).

Tripathi et al.,

Reference  a(Å) c (Å) Space Group

present 3.888 7.314 
experimental  3.887 7.354 
experimental   3.888 7.357 p4/nmm
experimental  3.890 7.890    
Theory  3.824 7.243   

Table 2. Structure parameters of BiOCl materials

Figure 3: First Brillouin zone for BiOCl (space group P4/
nmm)

The calculation results are shown on BiOCl crystal in 
Figure 4. The densities of states (DOS) are shown in the 
rightmost panels of this Figure. Such crystals' determined 
band gap values are given in Table 3. In our calculations, 
the valance band consists of the Cl 3s and 3p states, the 
O atom 2s and 2p states, and the Bi atom 6s states, while 
the conduction band consists of the Bi atom 6p states.

referance eg(eV) 

present 2.45  indirect- 2.77 direct
experimental  3.46  indirect
Theory  2.59  indirect  

Table 3. Energy band gaps for BiOCl

Figure 4: Energy band structure and DOS (density of 
states) for BiOCl

Ultimately, the values obtained for BiOCl in the band 
gap are less than those measured. The band gap values 
are underestimated than the experimental values for all 
of the crystal structures considered. Because of the use 
of pseudopotential method this is an expected case. 

3.3. Optical Properties: It is well known that the effect 
of the electric field vector, e , of the incoming light is 
to polarize the material. At the level of linear response 
this polarization can be calculated using the following 
relation (Li et al, 2009; Zhang et al, 2019):
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i EP −=        (1)
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ijχ  is the linear optical susceptibility tensor and it 
is given by (Levine et al, 1989)
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are the matrix elements of the position operator 
and are given by

Where mkpmkv i
nm

i
nm ),()( 1 

−=  is the free electron mass, and nmp  
is the momentum matrix element.

As can be seen from equation (2), the dielectric function 
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Since the Kohn-Sham equations decide the properties 
of the ground state, there is no physical meaning to the 
unoccupied conduction bands as measured. If they are 
used in calculating optical properties for semiconductors 
as single-particle states, a band gap problem is included 
in the response calculations. In the present work, we 
used the 'scissors approximation' (Levine et al, 1989; 
philipp et al, 1963; Zhang et al, 2019) in order to take 
into account self-energy results. In the present work, , 
the scissor shift to make the theoretical band gap match 
the experimental one, is 1.01 eV for BiOCl.

expressions for the energy-loss spectrum, )(wL .

),(Im)( 1 wew −−= ijijL   (6)

The known sum rules (Kovalev, 1965) can be used to 
determine certain quantitative parameters, in particular 
the effective number of valence electrons per unit cell 
Neff, and the effective optical dielectric constant eeff 
which contributes to the optical constants of an energy  
crystal. One can obtain an estimate of the distribution of 
oscillator strengths for both intra band and inter band 
transitions by computing the Neff(E0) defined according 
to
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Where Na  is the density of atoms in a crystal, e and 
m are the charge and mass of the electron, respectively 
and Neff(E0) is the effective number of electrons 
contributing to optical transitions below an energy of (E0)

Further information on the position of the core and semi-core 
bands can be obtained by measuring the contribution made 
by the different bands to the static dielectric constant; e0

According to the Kramers-Kronig relations, one has
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Thus, an 'effective' dielectric constant can be defined, 
which represents a different means of inter band 
transitions than that represented by the sum law, 
equation (8), depending on the relation
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The physical meaning of eeff is quite clear: eeff is the 
effective optical dielectric constant governed by the inter 
band transitions in the energy range from zero to e0, i.e. 
by the polarization of the electron shells.

We have chosen a photon-energy range of 0-30 eV to 
calculate the optical response using the calculated band 
structure and have seen that a photon-energy range of 
0-18 eV is sufficient for most of the optical functions. 

The BiOCl crystal has an optically uniaxial, hexagonal 
structure. For this reason the BiOCl crystal linear 
dielectric tensor has two independent components that 
are the linear dielectric tensor's diagonal elements. Figure 
5 presents the measured actual parts and imaginary parts 
of the linear frequency-dependent dielectric function's 
xx- and zz- components. The function xx

1e  is equal to zero 
at about 6.66, 10.72, 13.90, 22.5, 22.99  and 23.23 eV (W, X, 
Y, Z, U and V in Figure 5), while the other function zz

1e

 
is equal to zero at about 7.37, 8.35, 8.49, 9.90, 12.97 
and 22.28 eV (W, X, y, Z, U and V in Figure 5). The 

values of the xx
2e  and zz

2e  peaks shown in Figure 5 
are summarized in Table 4. This peak corresponds to 
the transitions from the valance to the conduction band 
(see Figure 5).

The calculated energy-loss functions, L(w) , are presented 
in Figure 6.  In this Figure, Lxx and Lzz correspond to 
the energy-loss functions along the x- and z- directions, 
respectively. The function L(w) describes the energy loss 
of fast electrons traversing the material. The sharp 
maxima in the energy-loss function are associated with 
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24.33 and 25.23 eV, respectively and these value coincide 
with the V point in Figure 5.
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the existence of plasma oscillations (Marton, 1956). The 
curves of Lxx and Lzz in Figure 6 have a maximum near 

 
peaks (eV)

e2 A B C D e F G H I J K L M n O p
Xx 5.44 6.39 7.21 11.53 12.49 13.49 14.49 15.61 16.21 17.66 18.47 18.93 20.73 21.95 22.91 24.02
Zz 4.97 6.04 7.26 8.65 10.39 12.87 14.06 15.02 15.51 16.29 17.85 18.93 19.59 20.21 23.61 24.87 

Table 4. Comparative characteristics of linear optical functions of BiOCl crystal

Figure 5 Energy spectra of dielectric function for BiOCl

The calculated effective number of valence electrons Neff 
and the effective dielectric constant (eeff) are given in 
Figure 7. The effective number of valence electron per 
unit cell Neff, contributing in the inter band transitions, 
reaches saturation value at about 26 eV. This means that 

Figure 6 Energy-loss functions along the x- and z- axes 
for BiOCl

deep-lying valence orbital’s do not participate in the inter 
band transitions (see Figure 4)

Figure 7: Energy spectra of and along the x- and z- 
axes

The effective optical dielectric constant eeff as shown in 
Figure 7, reaches a saturation value at approximately 
16 eV. Dependence of the photon-energy eeff  can be 
separated into two regions. The first is marked by a 
rapid rise and extends up to 10 eV. The value of eeff  rises 
smoother and slower in the second region, and tends to 
saturate at 16 eV energy.  This means that the greatest 
contribution to eeff arise from inter band transitions 
between 4.7 and 16 eV.

CONCLUSION

In this work we have carried out a detailed investigation 
of the BiOCl crystal's electronic structure and frequency-
dependent linear optical properties using the density 
functional methods. This research had the challenge of 
applying the density-functional methods to a complex 
crystal such as the BiOCl. BiOCl crystal is seen as having 
the indirect forbidden gap. Our experimental results are 
consistent with the obtained band gap 2.45 eV values 
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in agreement with the previous results. The complete 
calculation of DOS shows that the valance band consists 
of 3s and 3p states of the Cl atom, 2s and 2p states of 
the O atom, and 6s states of the Bi atom, while the 
band of conduction consists of 6p states of the Bi atom. 
We investigated photon energy-dependent dielectric 
functions as well as related quantities such as power-
loss ratio, the effective number of valance electrons 
per unit cell participating in inter band transitions and 
the effective optical dielectric ratio along the x- and z- 
axes. The results of the structural optimization carried 
out using the LDA are in excellent agreement with the 
results of the experiments.
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