
ABSTRACT
The Genus Flavivirus cause significant human disease in the form of encephalitis or hemorrhagic fever. This 
genus of the family Flavi viridae comprises of 70 viruses, but vaccines are available for only yellow fever, 
Japanese and Tick Borne Encephalitis. Disease diagnosis can be difficult as all the members of Flaviviridae 
are antigenically and genetically closely related. Thus it is important to reveal relationships between amino 
acids and other parameters in molecular sequences of Flavivirus as it may assist in controlling of the diseases 
caused by these viruses. In this paper an attempt has been made to develop and explore a model for mining 
fuzzy amino acid association patterns in peptide sequences of Flavivirus and their relationships with secondary 
structures and physicochemical properties. The uncertainty arising due to variation in length of sequences 
and this is handled by employing fuzzy sets. A tool based on fuzzy approach was developed to find fuzzy 
amino acid association patterns by calculating support and confidence. It also calculates secondary structure 
and physicochemical properties of amino acid association patterns. Total 9160 sequences were taken from 
National Centre for Biotechnology Information. After that around 4004 non-redundant peptide sequences of 
Flavivirus subfamilies filtered to form the dataset. This dataset is transformed to fuzzy transaction dataset 
and their fuzzy support and confidence have been computed. The association patterns generated from this 
model can be useful in understanding the structure, function and interaction of the protein in the disease. 
This patterns generated may also be useful in gaining better insight about the structure and function of the 
genus leading to development of new vaccines.
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INTRODUCTION

Flaviviruses of the family Flavi viridae are 
important arthropod-borne viruses in both human 
and veterinary medicine. The Flavivirus family 
contains many viral agents which produces 
encephalitis. Flavivirus encephalitis’s are either 
mosquito- borne, tick-borne, or an unknown 
vector (Oya and Kurane 2007). Major symptoms 
include mild acute febrile syndromes, severe 
neurological, hepatic and hemorrhagic disease. 
The geographical diversity of Flavivirus has 
shown the occurrence of Japanese Encephalitis 
Virus (JEV) in Asia, causing menigo encephalitis 
in children and West Nile Virus (WNV) in West 
Africa, Middle East, and from 1999 in North 
America (Blitvich 2008).  The overview of the host 
genes and variants on modify susceptibility or 
resistance to major mosquito-borne flaviviruses 
infections in mice and humans (Manet and 
Roth 2018). Mosquito-borne flaviviruses and 
their interactions with the innate immune 
response have been well-studied and reviewed 
extensively, thus this review will discuss tick-
borne flaviviruses and their interactions with 
the host innate immune response (Lindqvist and 
Upadhyay 2018). 

Flaviviruses exploit the ER function during 
infection to gain optimal replication. Multiple 
independent genome-wide screen studies have 
identified several ER-associated complexes 
and individual proteins that are important for 
flavivirus replication. Thus, these ER- complexes 
represent promising host targets for developing 
broad-spectrum anti-flavivirus drugs,( Rothan  
and Kumar 2019). The area of bioinformatics 
is known for association analysis, which is one 
of the most popular analysis paradigms in data 
mining (Gupta et al. 2009). The association rule 
mining has become one of the core task, and 
motivated tremendous interest among the data 
mining researchers and practitioners (Agrawal et 
al. 1995). The association rule mining research 
mainly focuses on discovery of patterns and 
algorithms. The first reported algorithm for 
finding frequent item sets is the Apriori algorithm 
(Agrawal and Srikant 1994). 

Since then a good number of algorithms are 
reported in the literature for association rule 
mining. The traditional association rule mining 
algorithms lack in capability of handling inherent 
uncertainties present in the biological data.  
Thus there is high possibility of generation of 

over predicted or under predicted patterns in the 
data. The fuzzy set approach can be employed 
for mining association pattern in molecular 
sequences to overcome this challenge to some 
extent (Zadeh 1965). Association rules read the 
nature of different amino acids that are present 
in the protein. This very basic analysis provides 
understandings into the Co-occurrence of certain 
amino acids in a protein (Gupta Mangal  et al. 
2006). Attempts are also reported in the literature 
for mining associations in molecular sequences. 
In this paper an attempt has been made to explore 
fuzzy amino association patterns in peptide 
sequences of Flavivirus. To develop a model for 
mining amino acid association patterns in peptide 
sequences of MTBC has been discussed. The 
variation in the length of these sequences leads to 
variation in degree of relationship among amino 
acids present in each sequence. The fuzzy set is 
employed to model this uncertainty of degree 
of relationships among the amino acids of the 
peptide sequences of MTBC (Seth and Pardasani 
2014). 

An approach for mining fuzzy association patterns 
in peptide sequences of dengue virus employed 
to incorporate the degree of relationships 
among amino acids due to variation in length 
of the sequences. This approach is employed 
to incorporate the relationship of parameters 
with amino acid association patterns (Gour 
and Pardasani 2018). Analytical Study of Data 
Mining Applications in Malaria Prediction and 
Diagnosis. This study shows the large number 
of deaths occur annually as a result of many 
factors which include shortages of medical 
personnel, laboratory equipment, hospitals and 
wrong interpretation of laboratory results. It 
also established the fact that remote areas are 
majorly affected. The fusion of Medical Science 
and Computer Science (Information Technology) 
in managing deadly diseases as a result of the 
earlier mentioned challenges was also established. 
This collaboration has led to development of 
computer based predictive models in medical 
diagnosis and treatment (Boruah and Kakoty 
2019). Protecting the Privacy of Cancer Patients 
Using Fuzzy Association Rule Hiding, a novel 
method was presented to hide the sensitive rule in 
quantitative data by decreasing the support of the 
RHS of the rule. Experimental results demonstrate 
that the proposed approach is more efficient as 
it facilitates better rule hiding and minimizes the 
number of lost rules and ghost rules. Also, this 
approach makes minimum modifications to the 
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dataset ( Krishnamoorthy and  Murugesan 2018, 
Hussain and Kumar 2019).

In this study a Java EE platform based tool was 
developed of for studying of molecular sequences. 
The main feature of tool is its accuracy and 
intelligence in generating the results. The main 
aim is to analyze the fuzzy associations between 
various frequent patterns occur to handle 
upcoming challenges of uncertainty. The available 
bioinformatics tools provide information only 
about the secondary structure and physicochemical 
properties of entire peptide sequences without 
using any parameter like length of the sequences, 
length range of the sequences, creating difficulty 
in critical analysis due to under prediction and 
over prediction of the rules. The divergence and 
convergence of association patterns within the 
Flavivirus subfamilies is analyzed to generate the 
association rules. The results generated are also 
correlated with structural and physicochemical 
properties.

MATERIAl AND METhODS 

Description of the algorithm employed is as 
follows: In this paper we have taken molecular 
data of Flavivirus subfamilies like: mosquito borne, 
Tick borne, Known vector from NCBI. To calculate 
the Fuzzy frequent patterns in redundant and 
non-redundant dataset of Flavivirus subfamilies, 
the fuzzy membership of amino acid in respective 
sequence is calculated as

 (1)

Where  (A) is the frequency of amino acid 
A and µi (A) is the membership of amino acid A 
in the ith sequence. It is assumed that there are 20 
amino acids and each amino acid will have equal 
likely chance of appearing in a sequence. Thus 
the threshold value can be calculated as:

T=0.05*N  (2)

Here N is the Number of sequences.
The apriori algorithm is employed to find frequent 
patterns in all the sequences. These patterns are 
used to generate association rule .The Fuzzy 
Support from amino acid can be calculated as: 
The frequency Support for n amino acid can be 
calculated as:

 (3)

Confidence for n amino acid can be calculated 
by:

 (4)

RESUlTS AND DISCUSSION

After applying the fuzzy approach for finding 
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the maximum and minimum frequency of each 
amino acid for all subfamilies of Flavivirus, 
it has been found that there are variations  in 
frequent amino acid for redundant and non-
redundant data set of all three subfamilies of 
Flavivirus :-mosquito borne, tick borne and 
known vector subfamilies. G(glycine) is most 
frequent amino acid for Japanese encephalitis, 
St. Louis encephalitis , West Nile, Louping ill 
and Summar encephalities while L((luecine) is 
most frequent for Marry Valley, Ilheus, ,Central 
European, Russion  Spring-Rodant, Ricio and 

Rio Bravo whereas V(valine) amino acid is most 
frequent for Powassion. Amino acid C (cystein) 
is least frequent in Marry Vally, Ilheus , West 
Nile, Louping Ill, Russin Spring-Rodant, Summar 
encephalitis, Ricio and Rio Bravo whereas amino 
acid H(Histidine) is least frequent in Japanese 
encephalitis, St. Louis encephalitis, and Powassion 
; and W(Tryptopher) is least frequent for Central 
European. Table 1 shows the maximum support 
for frequent amino acid among the subfamilies 
of mosquito borne family of Flavivirus. A, G, L, 
T and S (Alanine, Glycine, Leucine, Threonine 

Figure 1. Algorithm of the method for finding frequent pattern
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Japanese encephalitis  Marry  Vally encephalitis  St. Louis encephalitis               Ilheus                 West Nile
     
R Non-R R Non-R R Non-R R Non-R R Non-R

S OF S OF SIX S OF EIGHT S OF SEVEN S OF SEVEN S OF SEVEN S OF FIVE S OF FIVE S OF SIX S OF FIVE
SIX FP FP [G, A,   FP[E, G, A,  FP[E, G, A,  FP[G, A, L,  FP[E, G, A,   FP[F, G,   FP[G, A, L,  FP[G, A,  FP[G, A, 
[G, A, L,  L, T, V, S] L, K, T,  L, K, T,  K, T,  L, K, T,  A, L, I,  I, T, V, S L, T, V, S] L, T, V, S]
T, V, S]  V, S] V, S] V, S] V, S]  T, S]
GALTVS    GALT EGALKT GALK TVS GALKTVS GALKTVS GALIS GALIS GALTVS GALTV
S= 127.35 VS S = 55.66 VS S= 5.29 S = 3.01 S = 13.93 S = 9.30  S= 8.22 S=4.28 S= 203.74 S= 115.42
TOTAL NO TOTAL NO TOTAL NO TOTAL NO TOTAL NO TOTAL NO GALTS TOTAL TOTAL NO TOTAL NO
OF SIX  OF SIX OF EIGHT OF SEVEN OF SEVEN OF SEVEN S = 8.16 NO OF FIVE OF SIX OF FIVE
FP: 1 FP: 1  F P: 1 FP: 1   FP: 1   FP: 1  FP : 1 FP : 1 FP: 1
- - - - - - GLITS     
- - -    S= 8.25
- - - - - - ALITS     
- - -    S= 8.09
- - - - - - TOTAL NO - - -
      OF FIVE
      FP: 4

*S= Support, FP= Frequent Patterns

Table 1. Maximum support in case of Mosquito Borne

Central European   Louping Ill  Powassan  Russian Spring-  Summer
(4033)   (45)  (126)  Rodents (7)   encephalitis 2)
 
R Non-R R Non-R R Non-R R Non-R R Non-R

S OF S OF S OF S OF S OF S OF S OF S OF S OF S OF
FOUR FP FOUR FP FIVE FIVE FP SIX FP SIX FP SIX FP FIVE FP EIGHT FP EIGHT FP
[G, A, L,  [G, A, L,  FP [E, G,   [E, G, A, [D, E, G,   [E, G, A,  [G, A, L,  [E, A, L,  [D, E, G,  [D, E, G, 
I, T, V, S] I, T, V, S] A, L,K, T,  L, K, T,  A, L, K,  L, K, T,  I, T, V] I, K, T,  A, L, V,  A, L, V, 
  V, S, R] V, S, R] T, V, S] V, S, R]  V, R] S, R] S, R]
GALI GALV      EGALS EGALS EGATVS EGALVS GALITV EALKR DEGAL DEGAL     
S = 203.74 S = 127.43 S = 2.30 S = 1.76 S = 6.32 S= 3.81 S = 0.36 S = 0.29 VSR VSR
        S = 0.10 S =0.10
GALV GALS GALTV      GALTV EAKTVS TOTAL NO TOTAL NO ALITV TOTAL NO TOTAL NO
S = 218.84 S=123.58 S= 2.86 S= 2.22 S= 6.53 OF SIX OF SIX S = 0.26 OF EIGHT OFEIGHT
     FP: 1 FP: 1   FP: 1 FP: 1
GALS      ALVS      TOTAL NO: TOTAL NO GAKTVS - - TOTAL NO - -
SUPP SUPPORT OF FIVE OF FIVE S = 6.40   OF FIVE
ORT= 209.47  = 121.30 FP:2 FP: 2    FP: 2

TOTAL NO  TOTAL NO      - - ALKTVS - - - - -
OF FOUR OF FOUR   S = 6.30 
FP: 3 FP:3 
- -   TOTAL NO - - - - -
    OF SIX
     FP: 4

Table 2. Maximum support in case of Tick Borne

and Serine ) are frequent for all subfamilies. V (Valine) is also 
frequent for all subfamilies except of  Ilheus virus for non-
redundant dataset. E (Glutamic) is frequent in Marry Valley for 
both redundant and non-redundant dataset and in St. Louis 
encephalitis (non-redundant dataset). K (Lysine) is frequent in 

marry valley and St. Louis encephalities. I (Isoleucine) is frequent 
for Ilheus. F (Phenylalanine) is frequent for redundant dataset 
of Ilheus virus. Table 2 represents maximus support found 
for tick borne subfamily. In tick borne subfamily maximum 
support for frequent amino acid are A, L, V (Alanine, Leucine, 
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Valine) for all subfamilies. G(Glycine) is frequent 
for all subfamilies except the Russion Spring-
Rodant non-redundant dataset. T (Threonine) 
is also frequent for all subfamilies except 
Summer encephalitis. S (Serine) is frequent 
for all subfamilies except Russion Spring- 
Rodent dataset. E (Glutamic) is frequent for 
Louping Ill, Powassan , Summer encephalitis and 
Russion Spring-Rodent (non-redundant datase). 
K(Lysine) is frequent for Louping Ill, Powasson 
and Pussion Spring-Rodent (non-redundant 
dataset),R is frequent for Louping Ill, Powassan 
(non-redundant dataset) and Russion Spring-
Rodent(non-redundant dataset),  I is frequent for 
Central european and Russion Spring-Rodent, D 
(Aspartic) is frequent for Summar encephalitis  
and Powassan (redundant dataset).

Table 3 depicts that in known vector subfamilies 
of Flavivirus; L,I,T,V,S (Leucine, Isoleucine, 
Threonine, Valine, Serine)  are frequent for 
all subfamilies, G(Glycine) and A(Alanine) are 
frequent for Rico and Rio-bravo (redundant 
dataset), S(Serine) is also frequent for Racio and  
K(Lysine) is frequent for Rocio non-redundant 
dataset. Kumari and Pardasani (2013,14), have 
applied the same method in their research but 
with different dataset i.e., GPCRs. Table 4 shows 
the probable structure (helix, beta, and coil) 
and physicochemical properties of Favivirus 
subfamilies: Mosquito Borne, Tick Borne and 

Known Vector. The observation reveals that 
the most of the amino acids G, A, L (Glycine, 
Alanine, Leucine) are common in all subfamilies 
and Helix is the Probable Structure in maximum 
subfamilies. The physicochemical properties like 
hydrophobicity, CBetaBranched, polar aliphatic 
and uncharged, non-polar aliphatic groups are 
common in all subfamilies. Table 5 shows the 
probable helix structure of protein for Flavivirus 
subfamilies based on amino acid associations. 
Amino acids like A, R, E, Q, L, K, M, H are 
responsible for helix structure formation. It has 
been revealed that the maximum frequent patterns 
for helix formation are 4-frequent patterns. Table 
6 shows the probable sheet structure of protein 
for Flavivirus subfamilies based on amino acid 
associations. Amino acids like V, I, T, C, W, F, 
y are responsible for secondary sheet structure 
formation.

It has been observed that the maximum frequent 
patterns are 3 for secondary structure of sheet 
formation i.e. ITV. Table 7 presents the secondary 
structure of coil formation in which almost all 
subfamilies have 2-frequent patterns GS which 
are responsible for formation of secondary 
structure. It has been observed in Table 5, 6 and 
7 that in all the 12 subfamilies of Flavivirus 
association patterns of amino acid exposed high 
tendency to form secondary structure Helix 
rather than Sheet and Coil. Table 8 and Figure 
1 and 2 depict the percentage wise calculations 
of physicochemical Properties of mosquito 
borne subfamilies. It reveals that west Nile virus 
(non-redundant dataset) have high percentage 
of Molecular weight and Extension Coefficient 
among all the subfamilies of mosquito borne. 

Redundant dataset of West Nile virus have shown 
higher tendency to form a secondary structure Coil 
(29.135%) among all the subfamilies of Mosquito 
Borne. Marry Vally has shown high tendency 
of Absorbance among all the subfamilies. All 
the subfamilies of Mosquito borne viruses show 
negative hydrophobicity. Illeus virus has high 
percentage of aliphatic index and Aromaticity 
among all the subfamilies of mosquito borne 
virus.  C-Beta Sheets are higher in Japanese 
encephalitis redundant dataset. Protein stability 
is high for Marry Vally virus in redundant and 
non-redundant dataset among all the subfamilies 
of mosquito borne. In Louis encephalitis both 
(redundant and non-redundant) datasets are 
showing high Salt Bridged, Positive Charged, and 

Rocio                 Rio Bravo
R Non-R R Non-R

S OF  S OF SOF S OF
THREE THREE FOUR FOUR
FP [G, A,  FP [G, A, L,  FP [G,A, FP [L, I, 
P, S] I, T,  I, K, T,  L, I,T, T, V, S]
V, P, S] V, P, S] V,S]
GLI GLI LIVS LIVS
S = 18.40 S= 16.64 S = 2.43 S = 1.75
GLT GLT TOTAL NO TOTAL NO 
S = 17.54 S = 15.79 OF FOUR OF FOUR
  FP: 1 FP: 1
GLV GLV - -
S = 18.43 S = 16.62
GLP GLP - -
S = 17.86 S = 16.20
GLS GLS - -
S = 17.45 S = 15.68
TOTAL NO TOTAL NO - -
OF THREE OF THREE
FP:5 FP:5

Table 3. Maximum support in case of Known 
Vector
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Subfamily
 R Non-R
 F- Probable   Physicochemical   F- Probable  Physicochemical
 Amino Structure  Properties Amino Structure  Properties
 Acid    Acid
 
Mosquito Borne Subfamilies 
Japanese  G, A, L,  Helix,  Polar aliphatic G, A, L,  Helix  Acidic Negative 
encephalitis T, V, S Sheet  (G), polar T, V, S   charged protein
  and  uncharged(S, T),    stable (E),
  Coil  non-polar    Polar aliphatic
    aliphatic(A,L,V)     (G),polar uncharged(S,T),
    and hydrophobic     non-polar
    (G,L,V), CBeta    aliphatic(A,L,V) and hydrophobic
  ,  Branched(T,V)     (G,L,V), CBeta Branched(T,V)
Marry  E, G, A, Helix  Acidic Negative E, G, A, L, Helix  Acidic Negative
Vally  L, K, T,    charged protein K, T, V, S   charged protein
encephalitis V, S   stable(E), Polar    stable (E), Polar
    aliphatic (G),     aliphatic hydrophobic
    non-polar     (G), non-polar
    aliphatic(A,L,V),     aliphatic(A,L,V),
    and polar     polar uncharged
    uncharged(T,S),    (T,S),basic
    basic charged    charged(K) and
    (K) and hydrophobic    hydrophobic(G,L,V),
    (G,L,V), CBeta    CBetaBranched (T,V)
     Branched(T,V)
St.  F,G, A, L,   Helix &   Aromatic, Aliphatic(F)  G, A, L, Helix  Polar aliphatic (G),
Louis  I, T, V,S Sheet  Polar aliphatic (G),polar I, T, V,S   polar uncharged( T,S),
encephalitis    uncharged ( T,S),non-polar    non-polar aliphatic(A,L,V,I) 
    aliphatic (A,L,V,I) and hydrophobic    and hydrophobic(G,L,V), 
    (G,L,V,F), CBetaBranched(T,V)    CBetaBranched(T,V)
Ilheus G, A, L,   Sheet  Polar aliphatic (G), G, A, L,  Sheet  Polar aliphatic (G),
 T, V, S   polar uncharged(S, T), T, V, S   polar uncharged(S, T),
    non-polar aliphatic(A,L,I,V)     non-polar aliphatic(A,L,V) 
    and hydrophobic(G,L,V)     and hydrophobic(G,L,V), 
    CBetaBranched(T,V)    CBetaBranched(T,V)
West G, A, L,  Helix  Polar aliphatic (G),  G, A, L,  Helix  Polar aliphatic (G), 
Nile T, V, S   non-polar aliphatic(A,L,V),  T, V, S,   non-polar aliphatic (A,L,V), 
    and polar uncharged(T,S)     and polar uncharged(T,S) 
        and 
    and hydrophobic(G,L,V),     hydrophobic(G,L,V), 
    CBetaBranched(T,V),    CBetaBranched (T,V),
Tick Borne Subfamilies
Central G, A, L,  Helix,  Polar aliphatic (G),  G, A, L,  Helix  Acidic Negative
European T, V, S Sheet and  polar uncharged(S, T), T, V, S   charged protein
  Coil  non-polar aliphatic(A,L,V)     stable (E), Polar
    and hydrophobic(G,L,V),     aliphatic(G),
    CbetaBranched(T,V)    polar uncharged
        (S,T),non-polar 
        aliphatic(A,L,V) and 
        hydrophobic(G,L,V),
        CbetaBranched(T,V)
Louping E, G, A, L,  Helix  Acidic Negative E, G,   Helix  Acidic Negative charged
Ill K, T, V, S, R   charged protein A, L, K,    protein stable (E),
    stable(E), Polar aliphatic  T, V, S, R   Polar aliphatic
    (G), non-polar     hydrophobic (G),
    aliphatic(A,L,V), and     non-polar aliphatic
    polar uncharged(T,S),    (A,L,V),  polar uncharged
    basic charged(K) and     (T,S),basic charged
    hydrophobic(G,L,V),     (K) and hydrophobic(
    CbetaBranched(T,V),     G,L,V), CbetaBranched
    basic positive      (T,V), basic positive
    charged  protein stable ®    charged  protein stable ®
Powassan D,F,G, A,  Helix &  Acidic Negative E , G, A,  Helix  Acidic Negative
 L, K, T, V,S Sheet  charged protein  L, K,  T,    charged protein
    stable(E), Polar aliphatic  V,S , R   stable(E),Polar
    (G),polar uncharged( T,S),    aliphatic (G),polar
    non-polar aliphatic(A,L,V) and     uncharged( T,S),non-polar
    hydrophobic(G,L,V), CbetaBranched(   aliphatic(A,L,V) and
    T,V), basic charged(K),    hydrophobic(G,L,V),
    Acidic Charged (D)    CbetaBranched(T,V),

Table 4. Probable Structures and physicochemical Properties of Protein Sequences of Sub families
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        Basic charged
        amino acid®, 
        basic charged(K),
Russian  G, A, L,  Sheet  Polar aliphatic (G), E, A, L,  Sheet  Acidic Negative
Spring-  I, T, V   polar uncharged( T), I, K,   T,    charged protein
Rodents    non-polar aliphatic V, R   stable(E),polar
    (A,L,I,V) and hydrophobic    uncharged(S,T),
    (G,L,V) CbetaBranched(T,V    non-polar aliphatic(
        A,L,I,V) and  basic 
        charged(K), hydrophobic
        (G,L,V), CbetaBranched
        (T,V), Basic charged 
        amino acid®
Summer D,E, G,  Helix  Acidic Charged (D), D,E, G,  Helix  Acidic Charged (D),
encephalitis A, L, T,    Acidic Negative A, L, T,    Acidic Negative
 V, S,R   charged (E ) V, S,R   charged protein stable
    ,Polar aliphatic (G),     (E ),Polar aliphatic (G),
    non-polar aliphatic    non-polar aliphatic
    (A,L,V), and polar     (A,L,V), and polar
    uncharged(T,S) and     uncharged(T,S) and
    hydrophobic(G,L,V),     hydrophobic(G,L,V),
    CbetaBranched(T,V),      CbetaBranched(T,V), 
    Basic charged amino     Basic charged amino
    acid®, protein     acid®,  protein
    stable(D,R,E)    stable(D,R,E)
Known Vector subfamilies
Rocio G, A, L,  Coil and  Polar aliphatic (G),  G, A, L,  Helix  Polar aliphatic (G),
 I, T, V, Helix  polar uncharged(T,S), I, K, T,  and  polar uncharged(S,T),
 P, S   non-polar aliphatic V, P, S Coil  non-polar aliphatic
    (A,L,I,P,V) and hydrophobic (A,I,L,V,P)   and,
    (G,L,V), CBeta    hydrophobic
    Branched(T,V)    (G,L,V), CBetaBranched
        (T,V),basic  charged (K)
Rio  G, A, L Helix,  Polar aliphatic (G),  L, I,  Coil  non-polar aliphatic(L,I,V),  
Bravo I,T, V,S Coil  polar uncharged(S,T), T, V,S   polar uncharged(T,S) and
    non-polar aliphatic    hydrophobic(L,V), 
    (A,L,I,V), and  hydrophobic    CBetaBranched(T,V)
    (G,L,V), CBetaBranched(T,V)

Negative Charged parameters.  Polarity is high in Marry 
Vally among all the subfamilies of mosquito borne of 
Flavivirus. Marry Vally shows the high tendency of Helix 
formation with respect to other subfamilies of Mosquito 
borne. Beta Sheet formation tendency is high in Japanese 
encephalitis redundant dataset than other subfamilies. 
Table 9 and Figure 3 and 4 present the physicochemical 
properties of tick borne subfamilies ,it has been found 
that non redundant dataset of Russian Spring-Rodent 
have  high percentage of molecular weight ,extension 
coefficient ,positive charge, negative charge, salt bridged, 
polarity, protein stability and helix formation among 
all the subfamilies of Tick borne subfamilies, Central 
European redundant dataset are having high percentage 
of  hydrophaticity, aromalicity and beta sheet formation. 
Among all subfamilies of tick borne, coil formation is high 
in non redundant dataset of Central European. Absorbance 
is high in Louping ill redundant dataset, C-Beta branched 
is high in Powassion, aliphatic index is high in Russian 
Spring-Rodent among all subfamilies of Tick Borne virus. 
Table 10 and Figure 5 & 6 present some physicochemical 
properties of known vector subfamilies. It has been found 
that molecular weight, aliphatic index, aromaticity, 
extension coefficient absorbance , C-Beta branched  and 
helix formation are high in Rio bravo(redundant dataset) 
and beta sheet formation tendancy is high in Rio bravo non-

redundant dataset. Hydrophaticily, polarity, salt bridged 
and coil formation are high in Rocio (redundant dataset) 
and protein stability and positive-negative charge are high 
in non-redundant dataset of Rocio. Some of the researcher 
have applied the same method in their research but with 
different dataset like Shankar and Pardasani (2013) worked 
on the dataset Apphaproteo bacteria; Seth  Pardasani 
(2015), worked on the dataset MTBC; Gour and Pardasani 
(2018) studied the dataset Dengue Virus. The mathematical 
expressions represent the degree of relationships among 
amino acids in peptide sequences of flavivirus subfamilies 
and association relationships among amino acids in peptide 
sequences of flavivirus subfamilies(mosqitu born, tike born 
and known vector). These relationships are characterized 
by fuzzy membership, fuzzy support and fuzzy confidence. 
The relationships are interpreted in terms of associations 
rules of amino acids in peptide sequences. 

The association rules generated on the basis of above 
Flavivirus subfamilies results are given below:-

Mosquito Borne Subfamilies:-
For 2 frequent Patterns:-
1. {A(Frequent)∩L(Frequent)=>Tendency for Helix 

Formation}
2. {A(Frequent)∩E(Frequent)=>Tendency for Helix 
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Subfamily Helix Formation
 (A,R,E,Q,L,K,M,H)
 R    Non-R
 1-FP  2- FP 3- FP 4- FP 1- FP 2- FP 3- FP 4- FP

Japanese encephalitis A,E,L AL None None A,E,L,K AL None None
Marry A,L, AL,A EAL, EALK A,L, AL,AE, EAL, EALK
Vally E,K,R E,AK, EAK,   E,K,R AK,LE, EAK,
encephalitis  LE,LK, ELK,   LK,EK, ELK, 
  EK,ER ALK    ALK,
   ER  
St.  A,L, AL,AE, ALK None A,L, AL,AE, EAL, EALK
Louis  E,K AK,LE,   E,K AK,LE, EAK,
encephalitis  LK,EK    LK,EK ELK,
       ALK
Ilheus A,L AL None None A,L AL None None
West A,L, AL, None None A,L, AL, - -
Nile K LK   E,K LK 
Central A,L, AL None None A,L, AL None None
European E,K    E,K
Louping Ill A,L, AL,AE EAL, None A,L, AL, EAL, None
 E,K,R ,AK ALK,  E, AE, ALK,
  LE,LK, ALR  K,R AK ALR
  EK,AR.    LE,LK,
  LR    EK,
      AR.LR
Powassan A,L, AL, EAL, None A,L, AL,AE, EAL, None
 E,K,R AE, EAK,  E,K,R AK, EAK,
  AK, AR, ALK,   LE,LK, ELK,
  LE,LK,  ALR   EK, ALK
  LR ,    AR,LR
  EK,ER
Russian  A,L, AL,AE, EAL  None A,L, AL,AE, EAL, EALK,
Spring- E,K EK,LE   E,K,R AR,AK, EAK, EALR,
Rodents      LE,LK, ELR, EAKR,
      LR,EK, EKR, ALKR
      ER,KR ALK,
       ALR,
       AKR,
       LKR
Summer A,L, AR,AK, EAL, EALR A,L, AR, EAL, -
encephalitis R,E,K AE,,LE, EAR,  R,E,K AK, EAR,
  LK,LR, ELR,   AE,,LE, ELR,
  ER,AL ALK,   LK,LR, ALK,
   ALR   ER,AL ALR
Rocio A,L,R,K AL None None A,L, K AL,LK None None
Rio Brivo A,L,K AL,LK None None A,L,K AL,LK None None

Table 5. Probable Helix Structure of Protein of Flavivirus Subfamilies based on amino acid association
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Subfamily Sheet Formation
 (V,I,T,C,W,F,Y)
 R    Non-R
 1- FP 2- FP 3- FP 4- FP 1- FP 2- FP 3- FP 4- FP

Japanese encephalitis  V,T,I VT,VI None None V,T,I VT,VI None None
Marry Vally encephalitis V,T VT None None V,T VT None None
St. Louis encephalitis V,T,I VT None None V,T VT None None
Ilheus V,F,I,T VI,VT,IF,IT None None V,I,T VI,IT None None
West Nile V,T VT None None V,T VT None None
Central European V,T,I VT,VI None None V,T,I VT None None
Louping Ill V,T VT None None V,T VT None None
Powassan V,T VT None None V,T VT None None
Russian Spring-Rodents V,I,T VI,VT,IT ITV None V,I,T VI,VT,IT ITV None
Summer encephalitis V,T VT None None V,T VT None None
Rocio V,T,I VT,VI None None V,T,I VT None None
Rio Brivo V,T,I VI,IT None None V,T,I VI,IT None None

Table 6. Probable Sheet Structure of Protein of Flavivirus Subfamilies based on amino acid association

Subfamily Coil
 (N,D,P,S,G)
 R Non-R
 1- FP 2- FP 3- FP 4- FP 1- FP 2- FP 3- FP 4- FP

Japanese encephalitis  G,S,D GS none none G,S GS None None
Marry Vally encephalitis G,S GS None none G,S GS None None
St. Louis encephalitis G,S GS None None G,S GS None None
Ilheus G,S GS None None G,S GS None None
West Nile G,S GS None None G,S GS None None
Central European G,S GS none none G,S,D GS None None
Louping Ill G,S GS None none G,S GS None None
Powassan G,S,D GS None None G,S,D GS None None
Russian Spring Rodents G,S None None None G,S G None None
Summer encephalitis G,S,D GS,GD, DGS None G,S,D GS,GD DGS None
  SD    ,SD
Rocio G,S,P GS,GP none none G,S,P GS,GP None None
Rio Brivo G,S GS None none G,S None None None

Table 7. Probable Coil Structure of Protein of Mosquito Borne Subfamilies based on amino acid 
association

Formation}
3. {E(Frequent)∩K(Frequent)=>Tendency for 

Helix Formation and Protein Solubility}
4. {E(Frequent)∩R(Frequent)=>Tendency for 

Helix Formation and Protein Solubility }
5. {V(Frequent)∩T(Frequent)=>Tendency for 

Sheet Formation}

6. G(Frequent)∩S(Frequent)=>Tendency for 
Coil  Formation}

For 3 frequent Patterns:-
1. { E(Frequent)∩A(Frequent)∩L(Frequent)=

>Tendency for Helix Formation}
2. {A(Frequent)∩L(Frequent)∩K(Frequent)=>

Tendency for Helix Formation}
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Physicochemical  Japanese  Marry  St.   Ilheus West
Properties/   encephalitis Vally  Louis   Nile
Parameters  encephalitis  encephalitis
 R Non-R R Non-R R Non-R R Non-R R Non-R

MOLECULAR 55938.88 97201.14 50446.12 61154.543 83670.14 99688.87 32957.98 33770.816  89999.94 111316.75
WEIGHT
EXTENSION  87659.75 157137.25 81971.6 100050.16 131802.67 158459.83 53105.535 48602.41  144807.45 183429.42
COEFFICIENT
ABSORBANCE  1.52 1.50 1.56 1.57 1.54 1.52 1.54 1.35 1.55 1.56
HyDROPHATICITy -0.04 -0.10 -0.30 -0.22 -0.18 -0.20 0.23 0.11 -0.13 -0.17
[GRAVy]
ALIPHATIC INDEX 86.74% 83.97% 80.47% 84.11% 78.93% 78.49% 102.01% 99.14% 82.76% 83.21%
AROMATICITy 8.22% 8.21% 8.65% 8.54% 8.85% 8.82% 10.86% 9.66% 9.17% 9.18%
PROTEIN STABILITy 22.97% 22.92% 24.90% 24.26% 22.55% 23.24% 16.67% 19.57% 21.78% 22.72%
C-BETA BRANCHED 2190% 21.18% 20.06% 20.67% 21.70% 21.27% 20.75% 19.95% 19.82% 19.61%
POLARITy 49.279% 49.60% 51.33% 50.29% 49.55% 49.96% 43.96% 45.30% 48.87% 49.28%
SALT BRIDGED 19.20% 19.68% 23.66% 22.58% 20.28% 20.61% 15.53% 17.68% 19.12% 20.01%
HELIX FORMATION 38.10% 39.04% 44.12% 43.46% 38.80% 39.43% 40.54% 41.52% 39.92% 40.72%
BETA SHEET 33.08% 32.02% 30.45% 30.89% 32.68% 32.39% 32.48% 30.77% 30.95% 30.68%
COIL 28.83% 28.94% 25.43% 25.65% 28.53% 28.19% 26.98% 27.71% 29.13% 28.60%
POSITIVE CHARGED 9.48% 10.10% 12.23% 11.84% 10.49% 10.72% 7.33% 8.88% 10.47% 11.00%

NEGATIVE CHARGED 10.52% 10.19% 10.93% 10.74% 9.93% 10.21% 8.46% 9.53% 9.35% 9.83%

Table 8. Physicochemical Properties of Mosquito Borne Subfamilies

Figure 1. Secondary structure  Formation of Mosquito Borne 
Subfamilies

Figure 2. Protein stability of Mosquito  of                                            
Borne Subfamilies
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Physicochemical Central  Louping l  Powassan  Russion   Summar
Properties European  Il    Spring-   encephalitis
(Parameters)       Rodent 
 R Non-R R Non-R R Non-R R Non-R R Non-R
MOLECULAR 51949.90 64864.06 62048.28 48462.6 76665.56 104627.31 975770.7 1356700.0  46053.8 46053.8
WEIGHT
EXTENSION  59115.016 73226.59 103324.78 79950.14 134810.8 188640.06 1096284.2 1520818.0 75842.5 75842.5
COEFFICIENT
ABSORBANCE  1.20 1.17 1.75 1.74 1.62 1.75 1.02  0.83 1.71 1.71
HYDROPHATICITY  -0.04 -0.17 -0.09 -0.07 -0.31 -0.26 -0.04  -0.42 -0.21 -0.21
GRAVY]
ALIPHATIC INDEX 91.54% 86.54% 87.55% 88.60% 77.86% 82.12% 98.51%  .15% 82.46% 82.46%
AROMATICITy 9.33% 9.00% 8.61% 8.41% 7.80% 7.95% 7.22% 5.72% 8.31% 8.31%
PROTEIN STABILITY 21.45% 23.28% 23.30% 23.36% 27.17% 26.40% 24.13%  .41% 24.73% 24.73%
C-BETA BRANCHED 18.76% 18.02% 18.75% 18.86% 19.80% 19.01% 18.86% 18.19% 18.54% 18.54%
POLARITY 47.21% 49.77% 46.279% 46.08% 51.11% 48.97% 45.98% 53.04% 48.90% 48.90%
SALT BRIDGED 19.08% 20.29% 20.65% 20.63% 22.53% 22.31% 22.26% 28.424% 19.957% 19.95%
HELIX FORMATION: 41.39% 42.01% 43.85% 44.28% 43.87% 44.86% 48.83% 52.47% 42.58% 42.58%
BETA SHEET: 29.73% 29.04% 29.25% 29.18% 20.01% 28.86% 26.83% 24.95% 29.08% 29.08
COIL: 28.85% 28.90% 26.900% 26.55% 26.12% 26.28% 24.35% 22.58% 28.35% 28.35%
POSITIVE CHARGED: 9.80% 10.27% 11.38% 11.50% 12.19% 12.50% 9.85% 3.06% 11.04% 11.04%
NEGATIVE 10.01% 11.00% 11.00% 9.96% 12.55% 11.991% 13.53% 17.30% 11.46% 11.46%
CHARGED:

Table 9. Physicochemical Properties of Tick Borne Subfamilies

Figure 3 Secondary structure Formation Tendency of Tick Borne 
Subfamilies

Figure 4 Protein stability of Tick Borne Subfamilies

For 4 frequent Patterns:-
1. {E(Frequent)∩A(Frequent)∩L(Frequent)∩K(Frequent)=>T

endency for Helix Formation}
Tick Borne Subfamilies:-
For 2 Frequent Patterns 
1. {A(Frequent)∩L(Frequent)=>Tendency for Helix 

Formation}
2. {A(Frequent)∩E(Frequent)=>Tendency for Helix 

Formation}
3. {E(Frequent)∩K(Frequent)=>Tendency for Helix Formation 

and Protein Solubility}
4. {L(Frequent)∩R(Frequent)=>maintain charge of protein 

and help in protein stability }
5. {V(Frequent)∩I(Frequent)=>Tendency for Sheet 

Formation}
6. {G(Frequent)∩S(Frequent)=>Tendency for Coil  

Formation}
For 3 frequent Patterns:-
1. { E(Frequent)∩A(Frequent)∩L(Frequent)=>Tendency for 

Helix Formation}
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Physicochemical Rocio  Rio Bravo
Properties R Non-R R Non-R
(Parameters)
 
MOLECULAR:  47890.18  48100.777  50921.996  7222.977
WEIGHT
EXTENSION  57442.98  58009.14  95937.62  88235.15
COEFFICIENT
[assuming all residues
of tyr,trp,cys]:
ABSORBANCE :  1.406  1.415  1.556  1.551
HyDROPHATICITy  -0.175  -0.210  0.321  0.275
[GRAVy]:
ALIPHATIC INDEX:  88.693%  87.751%  110.873%  08.928%
AROMATICITy:  9.205%  9.201%  9.558%  9.106%
PROTEIN STABILITy:  21.997%  22.564%  17.356%  18.189%
C-BETA BRANCHED:  18.433%  18.334%  20.401%  20.638%
POLARITy:  48.404%  49.059%  43.085%  43.980%
SALT BRIDGED:  19.403%  19.775%  16.250%  16.853%
HELIX FORMATION:  41.123%  41.160%  41.653%  40.991%
BETA SHEET:  29.418%  29.392%  31.452%  31.468%
COIL:  29.460%  29.448%  26.896%  27.541%
POSITIVE CHARGED:  10.590%  10.8585%  9.099%  9.249%
NEGATIVE CHARGED:  9.626%  9.850%  6.764%  7.216%

Table 10. Physicochemical Properties of Known Vector Subfamilies

Figure 5. Secondary structure Formation 
Tendency of Known Vector Subfamilies

Figure 6. Protein stability of Known Vector 
Tendency of Known Vector Subfamilies
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2. {A(Frequent)∩L(Frequent)∩R(Frequent)=>
Tendency for Helix Formation}

3. {E(Frequent)∩K(Frequent)∩R(Frequent)=> 
Tendency for Helix Formation and Protein 
Solubility }

4. {I(Frequent)∩T(Frequent)∩V(Frequent)=>
Tendency for Sheet  Formation}

5. {D(Frequent)∩G(Frequent)∩S(Frequent)=
>Tendency for Coil  Formation}

For 4 frequent Patterns:-
1. {E(Frequent)∩A(Frequent)∩L(Freque

nt)∩K(Frequent)=>Tendency for Helix 
Formation}

2. {E(Frequent)∩A(Frequent)∩L(Freque
nt)∩R(Frequent)=>Tendency for Helix   
Formation}

For 5 frequent Patterns:-
1. {E(Frequent)∩A(Frequent)∩L(Frequent)∩

K(Frequent)∩R(Frequent)=>Tendency for 
Helix Formation}

Known Vector Subfamilies:-
For 2 Frequent Patterns:-
1. {A(Frequent)∩L(Frequent)=>Tendency for 

Helix Formation}
2. {L(Frequent)∩K(Frequent)=>Tendency for 

Helix Formation}
3. {V(Frequent)∩T(Frequent)=>Tendency for 

Sheet Formation}
4. {V(Frequent)∩I(Frequent)=>Tendency for 

Sheet Formation}
5. {G(Frequent)∩S(Frequent)=>Tendency for 

Coil  Formation}
6. {G(Frequent)∩P(Frequent)=>Tendency for 

Coil  Formation}

According to rule 1 for 2 frequent patterns of 
all subfamilies, it has been observed that amino 
acids A and L favour helix formation. According 
to rule 1 for 3 frequent patterns of mosquito and 
tick borne subfamilies, it has been observed that 
amino acids E, A and L favour helix formation. 
According to rule 1 for 4 frequent patterns of 
mosquito and tick borne subfamilies, it has been 
observed that amino acids E, A, L and K favour 
helix formation. According to rule 1 for 5 frequent 
patterns of tick borne subfamilies, it has been 
observed that amino acids E, A, L, K and R favour 
helix formation.Similar interpretation can be 
inferred by rest of the rules for frequent patterns 
of all subfamilies in frequent patterns. The above 
result shows frequent pattern for amino acid in 

helix formation is maximum than sheet and coil 
formation.  

CONClUSION

The fuzzy set approach is proposed and employed 
for prediction of amino acid association patterns 
in peptide sequences of flavivirus subfamilies. 
The association rules generated have been 
used to predict the physiochemical properties 
and secondary structures as an illustration. 
The association patterns generated gives the 
insights of various relationships among amino 
acids, physiochemical properties and secondary 
structures. Such models can be developed 
to generate the information on molecular 
relationships and mechanisms involved in the 
disease which could be useful to bio medical 
scientists for development of methodology for 
diagnosis and treatment of diseases. 
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