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ABSTRACT

In forging process of complex parts, the raw material cannot be transformed in one forging stage to the fi nal shape; 
therefore, using one or several pre-form dies would be necessary. An optimal pre-form die should be capable of 
meeting several design criteria’s. Among such design criteria’s one can mention the defect-free parts manufacturing 
with minimum raw materials, minimum plastic strain, minimum force requirement for fulfi lling the process as well 
as fi lling completely the fi nal die. In this research, the Genetic Algorithm (GA) is used as a tool for Cartesian path 
generation. For this reason, at fi rst, several different pre-form dies are produced using random mathematical func-
tions. Then, using fi nite elements simulation, the optimal die selection criteria’s are calculated. An artifi cial neural 
network (ANN) is learned by the data obtained from simulation so that it can predict the results of the simulation. 
The ANN and design criteria’s are used as a target function for optimization using continuous GA. Finally, the best 
pre-form die geometry is calculated using the continuous GA. Also this method is used for H-shape parts to evalu-
ate the method performance. The optimal pre-form die is recommended for the H-shape part and its forging results 
extracted by the continuous GA. Also, the fi nite element simulation performed for the optimal die and the obtained 
results compared to the predicted results of the ANN. The results showed that the obtained optimal model meets the 
predefi ned criteria’s and this method can be used for optimization of pre-form dies successfully. 
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INTRODUCTION

Among manufacturing processes, forging process has a 
particular importance, since it helps to produce parts with 
excellent mechanical properties and minimum material 
wastes. In forging, the raw material has a relatively sim-
ple shape. This material is transformed like wax during 
one or more operations to a product with relatively com-
plex composition. Forging usually needs the relatively 
expensive instruments. As a result, this process is attrac-
tive economically when the manufactured parts are in 
mass volume or when special mechanical properties are 
required for the fi nal product. The material’s increasing 
costs, energy and particularly the human force requires 
that the forging processes and instruments are designed 
with minimum trial and error and minimum possible 
time. Therefore, making use of computerized methods, 
i.e. CAE, CAM, CAD and particularly fi nite elements 
analysis-based computerized simulation is an absolute 
requirement (Altan et al. 2006). 

For H-shaped parts, considering complexity param-
eter, if the section height-to-width ratio be high, the part 
shape would be complex and in order to produce it, the 
pre-form die is needed. So far, there have been used dif-
ferent methods for pre-form die designing but none of 
them is suitable for die optimal design. 

Lanka et al. (1991) proposed a new method for 
designing the pre-form dies in plane strain forgings. 
In this method, the number of pre-form stages required 
for the forging is investigated. The design criteria’s also 
were stress rate and strain rate. Grandhi et al. (1993) 
used design parameters control algorithm in forging 
process. The mentioned parameters include dies velocity 
for in-built strain rate control. They performed the anal-
ysis on solid and visco-plastic materials in fi nite ele-
ments model. Zhao et al. (1995) provided the pre-form 
die design using a node separation criterion in forging 
reverse simulation with fi nite elements model. In this 
method, the complexity factor which shows the process 
diffi culty is used. Zhao et al. (1997) applied sensitivity 
analysis model with fi nite elements model for designing 
pre-form dies in accurate forging. Also, the applicability 
of this method in plane strain and axisymmetric forg-
ing was investigated. Using electrical fi eld theory, Lee 
et al. (2002) proposed a method for manufacturing the 
axisymmetric parts’ pre-form in which the shape com-
plexity parameter is investigated. Then, using neural 
networks the optimal die was obtained. 

Abri Nia et al. (2006) obtained the dimensions and 
coordinate of the part considering the contact time 
parameters for middle dies of the H-shaped parts using 
reverse transformation method-based algorithm as well 
as nonlinear fi nite elements model. Li et al. (2007) pre-
sented a novel intelligent optimization approach that 

integrates machine learning and optimization tech-
niques. An intelligent gradient-based optimization 
scheme and an intelligent response surface methodol-
ogy were proposed, respectively. Then optimization 
algorithms implemented more effectively to fi nd opti-
mal design results. An extrusion forging process and a U 
channel roll forming process are studied as application 
samples and the effectiveness of the proposed approach 
is verifi ed.

Bonte et al. (2010) used Sequential Approximate Opti-
mization (SAO) for optimizing forging processes. Three 
variants of the SAO algorithm which differ by their 
sequential improvement strategies have been investi-
gated and compared to other optimization algorithms by 
application to two forging processes. The results showed 
that SAO provides a very effi cient algorithm to optimize 
forging processes using time-consuming FEM simula-
tions. 

Khalili and Fonoudi (2010) investigated hot forging 
process of AISI-1025 using Deform3D software. They 
used an artifi cial neural network to predict forging force 
and strain based on the initial billet temperature, die 
velocity, die displacement and friction between billet 
and dies. The input data gathered using FEM simula-
tions. The obtained results showed that friction and die 
displacement are the most effective parameters on the 
forging force respectively.

Hosseinzadeh et al. (2010) outlined the Taguchi opti-
mization methodology, to optimize the effective param-
eters in forming cylindrical cups by the new die set 
of sheet hydroforming process. It was shown that the 
Taguchi method is suitable to examine the optimization 
process. Khalili et al. (2011) studied the optimum blank 
shape design for the deep drawing of Elliptical-shape 
cups with a uniform trimming allowance at the fl ange. 
In this research, a new method for optimum blank shape 
design using fi nite element analysis has been proposed. 
For this reason they applied Response Surface Meth-
odology (RSM) with Reduced Basis Technique (RBT) 
to assist engineers in the blank optimization in sheet 
metal forming. The proposed method is found to be very 
effective in the deep drawing process and can be further 
applied to other stamping applications. Lu et al. (2011a) 
investigated three direct search algorithms, i.e. a modi-
fi ed simplex, random direction search and enhanced 
Powell’s methods together with a new localized response 
surface method and applied to solve die shape optimiza-
tion problems in metal forming processes. Their main 
motivation is to develop effi cient and easy to implement 
optimization algorithms in metal forming simulations. 

The optimization results from the three case prob-
lems show that direct search based methods especially 
the modifi ed simplex and the localized response surface 
methods are computationally effi cient and robust for 
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net-shape forging and extrusion optimization problems. 
It is also suggested that these methods can be used in 
more complex forging problems where die shape design 
and optimization are essential for achieving net-shape 
accuracy.

Lu et al. (2011b) based on the evolutionary structural 
optimization (ESO) concept, developed a topological 
optimization method for preform design. In this method, 
a new criterion for element elimination and addition on 
the work piece boundary surfaces is proposed to optimize 
material distribution. Two 2D case problems including 
forging of an airfoil shape and forging of rail wheel are 
evaluated using the developed method. The results sug-
gest that the developed topology optimization method is 
an effi cient approach for preform design optimization. 

Shamsi-Sarband et al. (2012) utilized fi nite element 
method and sensitivity analysis for optimizing a preform 
die shape in the superplastic forming (SPF) process. In 
their study, the effect of friction coeffi cient on the opti-
mized preform die shape is investigated. They showed 
that friction coeffi cient has an important effect on the 
optimized preform die shape and thickness distribution.

Naeemi (2013) used the reverse transformation 
method for designing the pre-form die and ANN for pre-
dicting the forging process and fi nally, among 500 pre-
form dies designed, the optimal die meeting the design 
criteria’s is selected. Shamsi-Sarband et al. (2013) used 
a combination of sensitivity analysis and FEM to design 
a preform for a two-stage superplastic forming process. 
The results showed that the geometric parameters have 
a signifi cant effect on the preform shape. By increas-
ing the height and the cone angle of the fi nal cup, the 
depth of the preform in the inner cavity decreases and 
the dome region is approached to the center of the pre-
form cup. By increasing the corner radius of the fi nal-
die, only the height of the dome region decreases. Shao 
et al. (2015) presented a recent work on preform design 
optimization in bulk metal forming process based on a 
topological approach. In the paper, to obtain a forging 
preform shape with reduced material consumption but 
enhanced uniform material deformation, a new element 
removal and addition criterion has been established 
with consideration of hydrostatic stress and strain com-
ponents. They implemented their method to forging of 
a 3D aero engine blade. Considering the feasibility of 
producing a preform, different constraints are applied in 
the optimization process to affect the preform shape. The 
optimization results suggest that the developed topol-
ogy optimization method is an effi cient approach for 3D 
preform design and optimization.

In this research, the capability of continuous GA for 
Cartesian path generation is used as a tool for die shape 
optimization. At fi rst, several different pre-form dies are 
produced by random mathematical functions. Assuming 

that the selected part is axisymmetric, one can simulate 
it as a 2D die; therefore, a univariate function is used 
for producing the parts die shape. Then, the optimal die 
selection criteria are calculated using process simulation 
in ABAQUS software. The design criteria’s considered 
include fi nal die’s fi lling percentage, maximum force 
exerted on the fi nal die and the part’s maximum plas-
tic strain. The ANN has been taught using the infor-
mation obtained from simulation so that the relation-
ship between die shape and optimal design criteria’s are 
simulated. These networks can be used as target func-
tion in the continuous GA. Finally, the best pre-form 
die shape is recommended using continuous GA which 
is a mathematical function and by plotting this function 
in Cartesian coordination system, the die shape would 
be obtained. This model is used for H-shaped parts to 
evaluate the method performance.

MATERIAL AND METHODS

FORGING PROCESS

In forging, a part with primary shape is transformed 
between 2 instruments (dies) like a wax until it reaches 
the fi nal desirable shape. Therefore, a simple part geom-
etry becomes complex in this way that the instrument 
forms the desirable geometry on the part and the pres-
sure is exerted via the contacting surfaces between die 
and material on the transforming material. Today, the 
forging process is of signifi cant importance in industry 
and this is due to its advantages. In the following some 
of them are mentioned:

-  The forging parts are designed in such a form they have 
the fi nal product’s geometry as much as possible. Hence, 
in this process the material wastes would be minimum 
relative to the machining one. 

-  Due to lack of gas bubbles or suck which is observed in 
other processes such as welding and casting, the parts’ 
mechanical and physical properties would be better in 
forging. 

-  Due to the fact that in forging the die walls control the 
material fl ow, the part’s mechanical properties would 
improve signifi cantly. 

As a consequence, potential economical energy and 
material use would be resulted from forging; particu-
larly in average-high production quantities in which 
the instrument cost can be easily depreciated. Forging 
is a process based on experience. For years, the techni-
cal knowledge and experience in this fi eld have been 
obtained using trial and error methods. However, the 
forging industry was capable to supply complex prod-
ucts from new alloys with minimum plasticity (Altan et 
al. 2006). Physical phenomena which defi nes a forging 
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process is hardly explainable using quantitative rela-
tions. Metal fl ow, friction in material and die contact-
ing surface, heat production and transfer during waxy 
fl ow as well as process conditions and properties are 
diffi cult to predict and analyze. Often, in separate parts 
manufacturing, several forging processes (pre-forming) 
are required to transform the simple primary geometry 
to a complex one without material defect or degradation 
of properties (Altan et al. 2006).

2.2 Optimal pre-form die design using continuous GA 

and ANN

2.2.1 H-shaped part’s properties and geometry

In fi gure 1 the assumed part is indicated with its dimen-
sions in mm. For modeling this part in ABAQUS, ¼ of 
the part is considered as indicated in fi gure 2.

Final die shape and raw material for H-shaped part 

forging

Considering the part shape, its fi nal die is modeled as 
curve-shaped as showed in fi gure 3. The pre-form die for 
this part is also similar to the curve-shaped fi nal die. Of 
course, there would be a narrow path in fi nal die for bet-
ter material fl ux and the extra materials are extracted as 
pleated one. The raw part is considered for a cylindrical 
die with height of 0.9 m and radius of 0.3 m. since the 

raw part is axisymmetric, for its modeling ¼ of the part 
is used which is rectangular with height of 450 mm and 
width of 300 mm. 

Raw material physical properties

AL2014 is selected as raw material. Since, forging 
processes are performed in high temperature (400° C), 
the elastic and plastic properties of this aluminum are 
required in high temperature. These properties are (Altan 
et al. 1983): 

- Primary yield stress=23.7 MPa
- Poisson’s coeffi cient= 0.33
- Elasticity module=27.8 GPa
- Stress-strain relationship in plastic state

 (1)

In this equation, s is the primary yield stress, c is the 
fl ow constant and m is the strain-rate hardening which 
are c=1.02e8 MPa and m=0.11 for aluminum at 400° C.

2.2.4 The required pre-form phases’ number

In forging, at fi rst the required number of pre-form 
phases’ has to be determined. For this purpose, one can 
make use of trial and error method or proposed meth-
ods in the previous articles. In this research, considering 
the H-shaped part for forging, in order to determine the 
pre-form phases’ number, the Thomas’ method is used. 
Considering the part’s height-width ratio, the number of 
phases required is listed in Table 1. 

Considering the part’s dimensions used in this 
research, only one pre-form phase is needed. For this 
reason, the part forging includes 2 stages. At the fi rst 
phase, pre-form and in the second stage the fi nal die 
would be applied. 

FIGURE 1. H-Shaped part geometry (Abri Nia 
et al. 2006)

FIGURE 2. Part required geometry for modeling in 
ABAQUS 

FIGURE 3. Die’s fi nal shape

Table 1. Number of required pre-forms 
based on height-width ratio

height-width ratiorequired pre-forms
0-2No need to pre-form

2-31 pre-form phase

3 and more2 pre-form phases
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2.2.5 Mathematical function used for the H-shaped 

part’s pre-form

The pre-form’s geometry is estimated from mathematical 
functions and the fi nal die shape. Figure 4 demonstrates 
the mathematical functions used for pre-form die shape 
estimation. This curved-shape consists of 2 tangent 
hyperbolic functions interconnected in point m. 

Equation 2 expresses the combination of these 2 
functions as a new function. 

 (2)

In this relation, x is the pre-form die’s width coordinate, 
y is the pre-form die’s height coordinate before mapping, 
a1 and a2 are hyperbolic tangent functions’ coeffi cients 
and m is the interconnection point of both functions. 

The pre-form die’s dimensions are selected accord-
ing with the fi nal part shape and primary part shape. 

Considering that the part forging process has one 
pre-form phase, the pre-form die shape is consid-
ered a middle shape between fi nal part and primary 
part’s shapes. The curve width formed by equation 2 
is selected between the primary part’s width (300 mm) 
and the fi nal part’s width (500 mm) which would be 
400 mm. also, change of its height equals half of the 
fi nal part’s height change (150 mm). As a result, the 
pre-form die height would be 75 mm. therefore, the die 
width and height intervals would be [0, 400] and [0, 75] 
respectively. Relations 3 indicates the function used in 
equation 2 which is mapped in to the required width 
interval. 

 (3)

In equation 3, x is the pre-form die width coordinate; y 
is the pre-form die height coordinate before mapping, 
a1 and a2 are hyperbolic tangent functions coeffi cients 
and m is interconnection point of both functions. Rela-
tions 4 indicates the function used in equation 3 which 
is mapped to the required width interval. This equation 
is the fi nal problem relation. 

 (4)

In this equation, y is the pre-form die height coordinates 
before mapping, Y is the pre-form die height coordinate 
after mapping and ymax is a point of pre-form die with 
highest height. 

FIGURE 4. Die’s shape estimation by mathematical 
functions

FIGURE 5. Finaldiegeometry
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RESULTS AND DISCUSSION

FINITE ELEMENTS SIMULATION AND RESULTS 
OF FORGING 

Required parts formation

The parts required for forging process simulation are raw 
part, pre-form die and the fi nal die which are modeled in 
part setting of ABAQUS. All three parts are modeled in 
axisymmetric form. 

In case of pre-form die, the part is modeled in ana-
lytic rigid type and wire-shaped. The raw part which is 
modeled from deformable type and shell-shaped one. In 
case of fi nal die, similar to pre-form die, the modeling 
was analytic rigid type and wire-shaped. The fi nal die 
geometry is indicated in fi gure 5. 

Parts assembly

For parts assembling, the left end of pre-form and fi nal 
die is places on the top surface of the raw part. Figure 6 
indicates the parts assemble. 

Loading and boundary conditions defi nition

In this subsection, motion and the loading as well as 
parts boundary conditions are determined. In this pro-
cess, loading condition is applied in the form of die dis-
placement. In the fi rst phase, the pre-form die moves 
down 187.5 mm and in the second phase the fi nal die 
moves down 375 mm. The die’s motion type is also 
selected as smooth step. 

In case of boundary conditions, for all motion steps, 
the axis line of the raw part is in horizontal direction 

and its rotation is about the vertical axis on the surface. 
The down surface of the raw part is also fi xed in the 
vertical direction. 

Part meshing 

This section deals with the suitable meshing in order 
to solve the problem. The pre-form and fi nal dies need 
no elements due to their fi nal selection as rigid body 
and the only raw material needs meshing. Element type 
for raw part is CAX4R. This element is of quadrilateral 
axisymmetric and 4-node type reduced by integration. 
The suffi cient elements number for part meshing is 
selected as 2128 to reach convergence.

Problem solving results demonstration

In this research, in order to fi nd fi lling percentage, the 
Photoshop software is used. For this reason, at fi rst the 
simulation result obtained from the ABAQUS with format 
of PNG is stored with the resolution of 1056×453 pixels. 
Then, the PNG fi le is loaded in Photoshop and the pleated 
zone is removed and using its analysis tool, the num-
ber of pixels for the fi nal part is calculated. Comparing 
this number of pixels with the fi nal die pixels number in 
completely fi lled state, the fi lling percentage of the die 
is obtained. The next parameter obtained from simula-
tion is the maximum force required for forging. As it is 
seen in fi gure 7, plotting the diagram of exerted force on 
the fi nal die against time, one can obtain this maximum 
force. Maximum force required for this model is 226 MN. 

Simulation validating

In order to validate simulation and results, several check 
points are implied as follows.

FIGURE 6. Parts assemble
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FIGURE 7. Force diagram against time for fi nal die

FIGURE 8. Kinetic energy diagram during process

Kinetic energy-internal energy ratio

In cases the mass scale method is used for problem solv-
ing, the energy ratio should be validated. For validating, 
the maximum kinetic energy-maximum internal energy 
ratio is used. The value of this proportion should not be 
more than 0.1. This means that the maximum kinetic 
energy is 10% of the maximum internal energy. Figure 
8 represents the kinetic energy and fi gure 9 shows inter-
nal energy diagram against time. These diagrams can be 
helpful in calculating the maximum kinetic and internal 
energy.

As it is observed from fi gures 8 and 9, the maximum 
kinetic energy value is 54.4 MN/m and maximum inter-
nal energy value is 16.2 GN/m. the ratio of these ener-
gies is about 0.34% which is acceptable. 

Evaluation of elements’ number and results convergence 

Making use of suffi cient elements in order to make sure 
the solutions’ validity is of signifi cant importance. Lower 
elements than the necessary level causes wrong solu-
tions. Following, if the elements’ number be more than 
the necessary level, this would not cause large changes 
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in the solution and only takes more time to solve the 
problem which is costly. Here, for validating the simula-
tion, the necessary results of the problem for 8 different 
number of elements are calculated and the results are 
listed in table 2. 

As it is seen from the above table, the output param-
eters change signifi cantly up to 2128 elements and after 
that the changes are negligible. 

3.1.6.3 Step time 

The considered time for solving the problem in step 
module is effective on the problem results. If the time 
considered be very low, then the results would be wrong 
and if the time was very high, then the software would 
require more time for problem solving which leads an 
increase in problem processing time. 

Table 3 lists the results obtained from applying differ-
ent times in step module. As it is seen from results, 0.1 
s seems suffi cient. 

It is important to note that due to the fact that the 
process is isothermal and material properties are consid-
ered independent of temperature and strain rate, the step 

FIGURE 9. Internal energy diagram during process

Table 2. Simulation results for different number of elements

Processing 
time (s)

Maximum 
force (MN)

Maximum 
plastic strain

Die fi lling 
percentage

Elements 
number

11.41343.13097.75150

60.501795.14598.61600

114.71905.48498.94950

166.42087.52598.881350

139.72177.33699.101734

306.622610.31699.362128

358.02249.25399.082301

385.322311.48999.142400

Table 3. Simulation results by applying different 
step times

Maximum 
force (MN)

Maximum 
plastic strain

Die fi lling 
percentage

Step 
time (s)

22210.56699.310.05

22111.25799.130.07

22610.31699.360.10

22010.83799.970.12
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time doesn’t signifi cantly affect the output parameters 
dramatically. 

Finding an optimal pre-form die using ANN and 

continuous GA

Designing an Artifi cial Neural Network

Since the FEM simulation is very time consuming, an 
ANN is used to estimate the forging process results for 
different settings. A multilayer feed forward Percep-
tron network is chosen for this reason and the forging 
process input and output data are used for learning the 
network parameters. The network parameters include 
weights and biases which should be adjusted in such a 
way to optimize the network performance. The network 
performance is considered the minimum error between 
network outputs and targets. In order to optimize, one 
must defi ne a performance index. In this research, mean 
square error is used as a performance index. MSE is 
the most common and desirable error function used for 
multi-layer networks. 

Transfer functions selection

Transfer functions are determined based on the require-
ments of a problem. Considering recent studies and 
researches for correct results prediction from network as 
well as making use of the back propagation method in 

FIGURE 10. Widely used transfer functions in NN (Kia, 2010)

Table 4. Results obtained from networks run with different topologies

Maximum 
error

Minimum 
error

Correlation 
coeffi cient

MSETopologySerial

0.47-0.330.870.00895,12,31

0.35-0.140.970.002312,15,32

0.10-0.210.940.0002118,12,33

0.05-0.030.990.0000520,40,34

FIGURE 11. Test and training correlation coeffi cient 
diagram fortrained network 
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FIGURE 12. Network performance diagram

FIGURE 13. Fitness convergence and best generation in normal form

this research, the only requirement for these functions is 
that they have to be differentiable in the whole domain, 
since their differential is used in the learning process. 
Among most applicable functions, the sigmoid and lin-
ear functions are used widely. Figure 10 indicates some 
of these functions. 

In this research, the sigmoid hyperbolic tangent func-
tions in network hidden layers and the linear transfer 
function in last layer are used. 

ANN Optimal topology

In this section, several neural networks are designed with 
different topologies. Then, these networks are trained 
and on the basis of performance index, the optimal net-
work is selected for this research. Of course, for training 
the network, all data has to be normalized. 
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Table 5. Results obtained from normal and real scale

Maximum 
force (MN)

Maximum 
plastic strain

Die fi lling 
percentage

a2a1m
Raw part’s 
width

Scale

0.170770.30381.030.92140.42140.04810.5Normal

2718.887100.0613.99.6205.8302.5Real

FIGURE 15. Diagram of force exerted on the fi nal die for optimal state

FIGURE 14. Plastic strain contour related to optimal state

Optimal network selection

Table 4 lists the results obtained from network run for 
several different topologies. In this table, the numbers in 
the topology column defi nes the number of neurons in 
different layers. As it is seen, the last network with three 
layers containing 20 and 40 neurons in the hidden lay-
ers has the best MSE and correlation coeffi cient. 

Figure 11 indicates the correlation coeffi cient for 
training and test data and fi gure 12 indicates the net-
work performance. 

These fi gures show the chosen network capabili-
ties, so this network would be used to simulate the 
forging process as a fi tness function in optimization 
using GA.

3.2.5 The optimal pre-form die obtained by continuous 

GA

Figure 13 indicates the fi tness convergence diagram and 
the best generation diagram. It is notable that to make 
sure the GA results are global minimum, the optimiza-
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tic strain contour and fi gure 15 indicates the exerted 
force on the fi nal die. 

Table 6 lists the results of the optimal pre-form die 
fi nite element simulation in comparison with the results 
obtained from the GA. As it is observable from the 
results, there is very small difference between NN results 
and ABAQUS results. This means that NN is designed 
well and can predict the process as well. 

To ensure the obtained result is the optimum state of 
the pre-form die, several random states were simulated 
and their FEM results are shown in the Table 7 in compar-
ison to best result obtained by the GA method. This table 
proofs the optimality of GA results versus other states.

In fi gure 16, the cut section of the optimal state of the 
part is represented at the end of the fi nal die application.

CONCLUSION

In this paper, necessity of using pre-form dies in forg-
ing process declared and pre-form die designing methods 
were studied. Following, the GA capabilities were out-

Table 7. Comparison of GA result and fi ve random states

Maximum 
force (MN)

Maximum 
plastic strain

Die fi lling 
percentage

Raw part’s 
width

state

22310.25499.18300Random 1

2109.98598.91301Random 2

52413.83499.89302.5Random 3

53013.779100305Random 4

52813.51099.16304Random 5

2708.89599.96302.5best

Table 6. Comparison between fi nite elements and GA 
results

Maximum 
force (MN)

Maximum 
plastic strain

Die fi lling 
percentage

Results

2708.89599.96ABAQUS

2718.887100.06GA

FIGURE 16. Cut section of part for optimal state at the end of fi nal die 
application

tion process using GA is iterated 20 times and the best 
result is considered so that its validity was assured. 

Following, the best generation values are substituted 
in neural network and its results were extracted. The 
results obtained were in normal state; therefore, param-
eters values returned to their primary scale. Table 5 lists 
the results obtained in normal and real scale. 

3.2.6 Optimal pre-form die fi nite element simulation 

and results comparison

Using the optimized parameters obtained from the GA 
method, the forging process is simulated in ABAQUS and 
the results obtained would be compared to the results 
obtained from the GA. Figure 14 demonstrates the plas-
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lined such as their application on continuous problems 
optimization. It was indicated how to make use of math-
ematical functions in GA. Following, a new method for 
designing the optimal pre-form dies was proposed. In this 
method, without simplifying the pre-form die shape and 
only using different mathematical functions combina-
tion, the optimal pre-form die shape was designed. To this 
end, after selecting the suitable function for pre-form die 
shape, several random pre-form die shapes were produced 
and then using fi nite elements model and ABAQUS soft-
ware, the pre-form die forging process was simulated and 
results were extracted. These results were used for train-
ing the ANN, a network which can predict the forging 
process performed in fi nite elements model due to its time 
consumption. Finally, using designed ANN and effective 
parameters on forging, the target function required for 
GA was formed and following the algorithm running, the 
optimal pre-form die was obtained. This method was used 
for an H-shaped part which was axisymmetric to evalu-
ate its performance. The results show that combination of 
ANN and GA makes a powerful tool for designing com-
plex pre-form dies. Here, the method was used for a part 
which needs only one step pre-form die, and may be used 
for more complex parts with several pre-form dies to vali-
date its potential. Also the method can be extended using 
more parameters including number of pre-form dies, fl ux 
stress, friction coeffi cient and so on. Finally comparison 
of theoretical optimized results with experimental data is 
suggested.
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