Vivek and Faisal Moossa
488 IDENTIFICATION OF NOVEL MICRO RNAS AND THEIR TARGETS BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS
Das, A., Chaudhury, S., Kalita, M.C. and Mondal, T.K., 2015. In
silico identi cation, characterization and expression analysis
of miRNAs in Cannabis sativa L. Plant Gene, 2, pp.17-24.
Dehury, B., Panda, D., Sahu, J., Sahu, M., Sarma, K., Barooah,
M., Sen, P. and Modi, M.K., 2013. In silico identi cation and
characterization of conserved miRNAs and their target genes
in sweet potato (Ipomoea batatas L.) Expressed Sequence Tags
(ESTs). Plant signaling & behavior, 8(12), p.e26543.
Elhiti, M. and Stasolla, C., 2009. Structure and function of
homodomain-leucine zipper (HD-Zip) proteins. Plant Signal-
ing & Behavior, 4(2), pp.86-88.
Govaerts, R., 2003. World Checklist of Selected Plant Families
Database in ACCESS: 1-216203. The Board of Trustees of the
Royal Botanic Gardens, Kew.
Grif ths-Jones, S., 2006. miRBase: the microRNA sequence
database. MicroRNA Protocols, pp.129-138.
Hirsch, S. and Oldroyd, G.E., 2009. GRAS-domain transcrip-
tion factors that regulate plant development. Plant Signaling
& Behavior, 4(8), pp.698-700.
Ishida, S., Yuasa, T., Nakata, M. and Takahashi, Y., 2008. A
tobacco calcium-dependent protein kinase, CDPK1, regulates
the transcription factor REPRESSION OF SHOOT GROWTH
in response to gibberellins. The Plant Cell, 20(12), pp.3273-
3288.
Khraiwesh, B., Zhu, J.K. and Zhu, J., 2012. Role of miRNAs
and siRNAs in biotic and abiotic stress responses of plants.
Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mecha-
nisms, 1819(2), pp.137-148.
Lelandais-Brière, C., Naya, L., Sallet, E., Calenge, F., Frugier,
F., Hartmann, C., Gouzy, J. and Crespi, M., 2009. Genome-
wide Medicago truncatula small RNA analysis revealed novel
microRNAs and isoforms differentially regulated in roots and
nodules. The Plant Cell, 21(9), pp.2780-2796.
Li, W. and Godzik, A., 2006. Cd-hit: a fast program for clus-
tering and comparing large sets of protein or nucleotide
sequences. Bioinformatics, 22(13), pp.1658-1659.
Millar, A.A. and Gubler, F., 2005. The Arabidopsis GAMYB-
like genes, MYB33 and MYB65, are microRNA-regulated genes
that redundantly facilitate anther development. The Plant Cell,
17(3), pp.705-721.
Mori, I.C., Murata, Y., Yang, Y., Munemasa, S., Wang, Y.F.,
Andreoli, S., Tiriac, H., Alonso, J.M., Harper, J.F., Ecker, J.R.
and Kwak, J.M., 2006. CDPKs CPK6 and CPK3 function in ABA
regulation of guard cell S-type anion-and Ca 2+-permeable
channels and stomatal closure. PLoS Biol, 4(10), p.e327.
Nakashima, K., Fujita, Y., Kanamori, N., Katagiri, T., Umezawa,
T., Kidokoro, S., Maruyama, K., Yoshida, T., Ishiyama, K., Kob-
ayashi, M. and Shinozaki, K., 2009. Three Arabidopsis SnRK2
protein kinases, SRK2D/SnRK2. 2, SRK2E/SnRK2. 6/OST1 and
SRK2I/SnRK2. 3, involved in ABA signaling are essential for
the control of seed development and dormancy. Plant and Cell
Physiology, 50(7), pp.1345-1363.
Panda, D., Dehury, B., Sahu, J., Barooah, M., Sen, P. and Modi,
M.K., 2014. Computational identi cation and characterization
of conserved miRNAs and their target genes in garlic (Allium
sativum L.) expressed sequence tags. Gene, 537(2), pp.333-342.
Reinhart, B.J., Weinstein, E.G., Rhoades, M.W., Bartel, B. and
Bartel, D.P., 2002. MicroRNAs in plants. Genes & development,
16(13), pp.1616-1626.
Rhoades, M.W., Reinhart, B.J., Lim, L.P., Burge, C.B., Bartel, B.
and Bartel, D.P., 2002. Prediction of plant microRNA targets.
Cell, 110(4), pp.513-520.
Singh, J. and Nagaraju, J., 2008. In silico prediction and char-
acterization of microRNAs from red our beetle (Tribolium
castaneum). Insect molecular biology, 17(4), pp.427-436.
Singh, N. and Sharma, A., 2014. In-silico identi cation of miR-
NAs and their regulating target functions in Ocimum basili-
cum. Gene, 552(2), pp.277-282.
Singh, N., Srivastava, S. and Sharma, A., 2016. Identi cation
and analysis of miRNAs and their targets in ginger using bio-
informatics approach. Gene, 575(2), pp.570-576.
Sunkar, R. and Jagadeeswaran, G., 2008. In silico identi cation
of conserved microRNAs in large number of diverse plant spe-
cies. BMC plant biology, 8(1), p.1.
Sunkar, R., Kapoor, A. and Zhu, J.K., 2006. Posttranscriptional
induction of two Cu/Zn superoxide dismutase genes in Arabi-
dopsis is mediated by downregulation of miR398 and important
for oxidative stress tolerance. The Plant Cell, 18(8), pp.2051-2065.
Tian, C., Wan, P., Sun, S., Li, J. and Chen, M., 2004. Genome-
wide analysis of the GRAS gene family in rice and Arabidopsis.
Plant molecular biology, 54(4), pp.519-532.
Wilhelm, M. and Wilhelm, F.X., 2001. Reverse transcription of
retroviruses and LTR retrotransposons. Cellular and Molecular
Life Sciences CMLS, 58(9), pp.1246-1262.
Yang, T., Xue, L. and An, L., 2007. Functional diversity of
miRNA in plants. Plant Science, 172(3), pp.423-432.
Yin, Z., Li, C., Han, X. and Shen, F., 2008. Identi cation of
conserved microRNAs and their target genes in tomato (Lyco-
persicon esculentum). Gene, 414(1), pp.60-66.
Zhang, B., Pan, X. and Anderson, T.A., 2006. Identi cation of
188 conserved maize microRNAs and their targets. Febs Let-
ters, 580(15), pp. 3753-3762.
Zhang, B., Pan, X., Cannon, C.H., Cobb, G.P. and Anderson,
T.A., 2006. Conservation and divergence of plant microRNA
genes. The Plant Journal, 46(2), pp. 243-259.
Zhang, B., Pan, X., Cobb, G.P. and Anderson, T.A., 2006. Plant
microRNA: a small regulatory molecule with big impact.
Developmental biology, 289(1), pp. 3-16.
Zhang, B.H., Pan, X.P., Cox, S.B., Cobb, G.P. and Anderson, T.A.,
2006. Evidence that miRNAs are different from other RNAs. Cel-
lular and Molecular Life Sciences CMLS, 63(2), pp. 246-254.
Zhang, B.H., Pan, X.P., Wang, Q.L., George, P.C. and ANDER-
SON, T.A., 2005. Identi cation and characterization of new plant
microRNAs using EST analysis. Cell research, 15(5), pp.336-360.
Zuker, M., 2003. Mfold web server for nucleic acid folding
and hybridization prediction. Nucleic acids research, 31(13),
pp.3406-3415.