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ABSTRACT

A number of new advances in computer - aided drug designing have reduced the effective cost and time involved 
in drug discovery. However, the quest for more effective compounds often faces stiff challenge due to increased 
drug resistance. Pharmacophore modeling has emerged as a method with a lot of potential and is increasingly used 
for designing new molecules by using available knowledge of activity of compounds. 3D Quantitative Structure - 
Activity Relationship (QSAR) based pharmacophore modeling is a reliable method for developing new chemical 
moieties. Infl uenza A virus results in acute respiratory infection with serious consequences for the elderly and high 
– risk patients. Neuraminidase inhibitors are the well - known drugs that are frequently used against infl uenza virus. 
The current work has focused on developing a 3D QSAR based pharmacophore model for neuraminidase enzyme by 
using a dataset of known inhibitors. The best quantitative pharmacophore model selected was made of one hydrogen 
bond acceptor, one hydrogen bond donor and hydrophobic aliphatic features with high correlation value of 0. 917. 
Pharmacophore model was cross - validated by Fischer randomization and leave - one - out method to check the reli-
ability of model. The fi ndings can prove out to be quite helpful in screening new molecules against neuraminidase. 

KEY WORDS: NEURAMINIDASE, DISCOVERY STUDIO, 3D - QSAR, PHARMACOPHORE, COMPUTER – AIDED DRUG DESIGN

63

ARTICLE INFORMATION:

*Corresponding Author:  menaria.khushhali@gmail.com 
Received 27th Nov, 2016
Accepted after revision 21st Feb, 2017 
BBRC Print ISSN: 0974-6455
Online ISSN: 2321-4007 CODEN: USA BBRCBA

Thomson Reuters ISI ESC and Crossref Indexed Journal 
NAAS Journal Score 2017: 4.31 Cosmos IF : 4.006

© A Society of Science and Nature Publication, 2017. All rights 
reserved.
Online Contents Available at: http//www.bbrc.in/

INTRODUCTION 

Infl uenza virus is a member of Orthomyxoviridae fam-
ily of viruses. Based on differences in the nucleoprotein 
(NP) and matrix (M1) protein, this virus is classifi ed into 
three major categories - A, B and C. Infl uenza A, known 

for the infection of mammalian species, is divided into 
18 HA subtypes (H1 - H17) and 11 NA (N1 - N9). This 
division is based on serological reactivates of surface 
proteins, hemagglutinin (HA) and neuraminidase (NA)
(Ferguson et al., 2015, Ducatez et al., 2015). Various 
types of infl uenza viruses have signifi cant difference in 
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their host range and pathogenicity. They infect a variety 
of animals including pigs, horses, whales, dogs, bats and 
birds (Nayak et al., 2010, Rajao and Vincent, 2015).

Infection caused by Infl uenza virus, commonly 
known as fl u, is responsible for acute respiratory infec-
tion, with signifi cant morbidity in the population and 
mortality in the elderly and high–risk patients. It is 
also a prominent cause of disability and death and is 
therefore a serious public health issue (Kobasa et al., 
2004). One of the main limitations in new drug dis-
covery is drug resistance in mutant strains (Renzette et 
al., 2014). M2 protein and Neuraminidase (NA) are the 
two main drug targets for commonly available drugs. 
M2 protein inhibitors like amantadine and rimantadine 
have narrow spectrum of activity, hence provide lim-
ited protection(Hay et al., 1985, Hastings et al., 1996, 
Mammen et al., 1995, Colman, 1989, De Clercq, 2001).
Another target Neuraminidase (NA) is a glycoprotein. It 
acts as an enzyme and participates in the release of the 
progeny virus from infected cells(Gong et al., 2007, Var-
ghese and Colman, 1991). Two well - known Neurami-
nidase inhibitors are Zanamivir and Oseltamivir. Zan-
amivir is known for excellent anti-viral activity during 
intranasal administration but is not too effective when 
delivered systemically. Oral bioavailability of Zanamivir 
is low and easily eliminated by renal excretion(Ryan et 
al., 1995). Oseltamivir is orally active but the associated 
side effects like vomiting, nausea and several allergic 
reactions do not augur well for a promising drug(Burch 
et al., 2009). Few other Neuraminidase inhibitors such 
as Peramivir, Laninamivir are in phase III clinical trials 
(Hata et al., 2014). Peramivir shows less oral bioavail-
ability as compared to Oseltamivir(de Jong et al., 2014). 
So the situation is worrying and there is a need to design 
and identify new effective compounds for chemotherapy 
of infl uenza virus infection.

Pharmacophore modeling is one of the most impor-
tant and extensively used method in ligand - based drug 
design. There are various studies in literature where 
pharmacophore modeling was used as an effective tool 
to understand the important features for well - known 
target inhibitors. The pharmacophore model is widely 
acknowledged as a balanced quantitative model that 
can be used to explore common chemical characteristics 
among a considerable number of structures with great 
diversity. Qualifi ed pharmacophore model could also be 
used as a query for searching chemical databases to fi nd 
new chemical entities. Quantitative Structure-Activity 
Relationship (QSAR) is an effective statistical method 
used to design new chemical moieties from the previ-
ous knowledge of activity of known compounds(John et 
al., 2010, Li et al., 2015). Different classes of inhibitors 
could be useful in digging out valuable information for 
developing new potent NA inhibitors.

This study aims to construct the chemical features 
based on pharmacophore models for neuraminidase. A 
high correlation quantitative pharmacophore model was 
generated, using observed structure-activity relationship 
of known neuraminidase inhibitors. The pharmacophore 
modeling was successfully applied for the development 
of new model and validated with available methods. 
This work is signifi cant in connection with discovery of 
new molecules and may contribute to the development 
of more effective chemical moieties.

MATERIALS AND METHODS 

(1) Selection of Data Set Compounds

3D QSAR method is one of the ligand – based phar-
macophore modeling strategies used for the discovery 
of new effective compounds [12]. This strategy diverges 
from the usual pharmacophore approach in the num-
ber of training set compounds’ requirement and need of 
experimental activity values predicted through similar 
bioassay conditions, etc. A data set of 46 compounds 
was retrieved from BRENDA database and literature 
and the redundancy was removed (Schomburg et al., 
2004). Out of 46 compounds, 18 diverse compounds 
were selected for training data set with the experimental 
activity values (IC50) ranging from 0.0032 nM to 8640 
nM and structural diversity. These compounds were also 
utilized in pharmacophore cross - validation.

(2) Compound Preparation and Conformation Generation 

The ChemSketch Version 12 was used to design the 
2D structures of compounds and conversion of these 
compounds to 3D structures was done with the help of 
Accelrys Discovery Studio 3.1. Hydrogen atoms were 
then added to these prepared compounds and verifi ed 
later. This was followed by energy minimization pro-
cess using Smart Minimizer that carries out 1000 steps 
of steepest descent. This is then followed by applica-
tion of conjugate gradient algorithms with convergence 
gradient of 0.001 kcal/mol. After completion of energy 
minimization, a number of acceptable conformers were 
generated for every training set compound within DS 
Diverse conformation generation module employing the 
poling algorithm for conformational analysis. The pol-
ing algorithm eliminates the chances of redundancy in 
conformation generation and this, in turn, improves the 
coverage of the conformational space. Within an energy 
range of 20kcal/mol above the global energy minimum, 
maximum number of conformers generated for each 
compound was limited to 255 (Schuster et al., 2006, 
Bharatham et al., 2007, Neves et al., 2009). This practi-
cally means that the difference in energy values among 
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different conformers of a particular compound was < 
20kcal/mol.

(3) Generation of Pharmacophore Models

Ligand – based pharmacophore modeling is divided into 
two types methodologies one is common feature phar-
macophore modeling utilized the common features pre-
sent only in the most active compounds and another 
one based on 3D QSAR pharmacophore–the new design 
compounds activity estimated by using pharmacophore 
models, generation of this model by used the most active 
and inactive compounds’ chemical features with phar-
macological activity. The training set compounds fea-
tures identify by feature mapping protocol available in 
DS. The values of Uncertainty and the minimum inter 
– feature distances were set respectively to 2 and 2Å. In 
DS -3D QSAR pharmacophore generation used the Fea-
ture mapping protocol identifi ed hydrogen bond accep-
tor (HBA), hydrogen bond donor (HBD), hydrophobic 
aliphatic (HY-AL), hydrophobic aromatic (HY-AR) and 
ring aromatic (RA) features with other default values to 
generate ten pharmacophore models. 

Biological activity of compounds that is directly rel-
atively contributed to each feature of the model has a 
certain weight. The process of HypoGen pharmacophore 
model generation divided into three major steps - the con-
structive phase, the subtractive phase and the optimiza-
tion phase(Kurogi and Guner, 2001, Kansal et al., 2010). In 
constructive phase of Hypotheses identifi ed the common 
maximum number of active set compounds. HypoGen all 
combinations of pharmacophore features using for deter-
mines all possible pharmacophore confi gurations Apart 
from this, the hypotheses must fi t a minimum subset of 
features of the remaining most active compounds. The 
end of the constructive phase coincides with generation 
of a large database of pharmacophore confi gurations. 
The subtractive phase, on the other hand, goes through 
elimination of all phramacophore confi gurations that also 
exist in the least active set of molecules. The least active 
molecules here are considered to be those compounds 
whose activity levels are less by 3.5 orders of magnitude 
than that of the most active compound, though this order 
is not fi xed and can be modifi ed in accordance with the 
activity of the training set. 

The errors in activity estimates obtained through 
regression and complexity serve as adequate basis for 
scoring the hypotheses. The hypotheses scores get further 
improved in the optimization phase. This phase employs 
a simulated annealing approach. The activity prediction 
is optimized by considering variation of features and/
or locations. HypoGen stops after reaching the point 
beyond which no further score improvement is possible. 
It then provides top scoring 10 unique pharmacophore 
models. The reliability of these models is assesses on the 

basis of different cost parameters. The overall cost of a 
model consists of the weight cost, the error cost, and the 
confi guration cost. The weight cost shows a Gaussian 
increase pattern, the error cost is an indication of the 
difference between estimated and measured activities of 
the training set and the confi guration cost is a quantita-
tive measure of the hypothesis space entropy.

The generation of pharmacophore models also 
involves calculation of three additional cost values – the 
fi xed cost, the total cost, and the null cost. The fi xed 
cost is the least possible cost that represents the simplest 
hypothetical model that provides a perfect fi t for the 
data. Fixed costs consist of minimum achievable error, 
weight cost and the constant confi guration cost. The 
null cost, on the other hand, is the maximum cost of a 
pharmacophore and calculates the average of activity 
data of training set molecules. It matches with the maxi-
mum error cost. To generate a pharmacophore model, a 
total of ten cost values along with their fi xed and null 
cost were estimated. Ideally, the model should have a 
low fi xed cost and high null cost values. Alongside, the 
difference between the total and fi xed values should 
be minimum whereas the difference between total and 
null values should be maximum (Sundarapandian et al., 
2010, Sanam et al., 2009). Further, regression analysis 
was performed employing HypoGen for predicting activ-
ity of the training set compounds. This study was done 
using the relationship of geometric fi t value V/s the 
negative logarithm of activity. The activity prediction is 
directly proportional to the geometric fi tness. Other sta-
tistical parameters, namely - correlation coeffi cient and 
root mean square deviation (RMSD) were also computed. 
Finally, the model with high cost difference and correla-
tion coeffi cient with low RMSD was selected.

(4) Pharmacophore Cross Validation

The models were cross validated to assess their ability to 
predict the activity of any new compound. The identifi ed 
best model was validated via two approaches based on 
derived cost modules - the Fischer randomization test and 
leave – one - out method. All the cost values are stated 
in bits and 75 - 90% correlation is proposed by a differ-
ence of 40 - 60 bits. The Fischer randomization approach 
for validation of the pharmacophore model involved 
construction of 19 random spread sheets with 95% con-
fi dence level (Sarma et al., 2008, Thangapandian et al., 
2011a). In this study the correlation between the biologi-
cal activity and the chemical structures is tested by rand-
omizing the activity data of training set compounds. The 
models were generated using the same parameters which 
were used to build the original model but the activity val-
ues were randomized. The second is the leave – one - out 
method, where 18 pharmacophore models were generated 
with the same parameters used for generating original 



 Sudha Singh et al.

66 DEVELOPMENT OF 3D QSAR BASED PHARMACOPHORE MODEL FOR NEURAMINIDASE IN INFLUENZA A VIRUS BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS

pharmacophore model but leaving one compound at a 
time from the training set compounds. This is done to 
state the effect of every single training set compound in 
the generation of selected pharmacophore model (Stoll 
et al., 2002, Zampieri et al., 2009).

 RESULT AND DISCUSSION 

PHARMACOPHORE GENERATION

A training set with 18 compounds is used for the gener-
ation of ten pharmacophore models. Structures of these 
training set compounds are shown in (Figure 1). These 
models were generated by using HBA, HBD, HY-AL, 
HY-AR and RA features from the Feature Mapping 
Protocol(Arooj et al., 2013). All the selected pharmaco-
phore models consisted of either HBA or HBD or both, 
with HY-AL or HY-AR. Total cost values ranged from 
94.22 to 98.28. 

The pharmacophore generation run in this study 
revealed fi xed cost value and null cost value as 77.44 
and 157.052 respectively. The analysis of ten generated 
pharmacophores models indicates that the total cost 
value for the fi rst model (Hypo 1) is the closest to the 
fi xed cost value vis – à - vis other models. The cost dif-
ference between the null cost and total cost value of the 
fi rst pharmacophore model is 62.83 (Table 1). A cost dif-
ference value between 40 and 60 signifi es that the phar-
macophore model correlates the experimental and pre-
dicted activity. Herein, the cost difference value of Hypo 
1 signifi es the correlation between the experimental and 
predicted activity values of more than 90% of the train-
ing set compounds(Vuorinen et al., 2014, Kandakatla 
and Ramakrishnan, 2014). The Hypo 1 pharmacophore 
model, being the best, was selected and consisted of two 
HBA, one HBD and one HY-AL features (Figure 2).

Further investigation of the generated pharmacoph-
ore models was based on the selected ten pharmacoph-

FIGURE 1. 2D Structure of the training set compounds. 2D Chemical struc-
tures of the 18 training set with their experimental IC50 values
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Table 1. Statistical Results of the 10 Pharmacophore Hypothesis generated by Hypo Gen 
Algorithm

Hypothesis Total cost Cost difference RMSD Correlation Features
Hypo 1 94.2211 62.8309 1.30795 0.917666 HBA HBD HBD HY-AL

Hypo 2 95.2269 61.8251 1.36582 0.909478 HBA HBD HBD HY-AL

Hypo 3 96.7312 60.3208 1.40736 0.903947 HBA HBD HBD HY-AL

Hypo 4 97.0164 60.0356 1.41827 0.902366 HBA HBD HBD HY-AL

Hypo 5 97.34 59.712 1.44001 0.898952 HBA HBD HBD HY-AL

Hypo 6 97.9418 59.1102 1.50229 0.888384 HBA HBD HBD HY-AL

Hypo 7 98.251 58.801 1.50229 0.888384 HBA HBD HBD HY-AL

Hypo 8 98.2555 58.7965 1.50857 0.887742 HBA HBD HBD HY-AL

Hypo 9 98.2683 58.7837 1.5014 0.889011 HBA HBD HBD HY-AL

Hypo 10 98.2848 58.7672 1.49708 0.889783 HBA HBD HBD HY-AL

Null cost = 157.052; fi xed cost = 77.44; confi guration cost = 15.77
Cost difference = null cost – total cost.
HBA, hydrogen bond acceptor; HBD, hydrogen bond donor; hydrophobic aliphatic

Table 2. Experimental and Estimated IC50 Values of the Training Set Compounds based on Best 
Pharmacophore.

Name                    IC50 nM Error Fit value           Activity scale

Experimental Estimated Experimental Estimated 
Compound 1 0.0032 0.012 2.6 9.65 ++++ ++++

Compound 2 0.3 0.34 3.9 8.21 ++++ ++++

Compound 3 0.9 3.7 2.8 7.17 ++++ ++++

Compound 4 22 850 21 4.81 +++ ++

Compound 5 26 170 13 5.52 +++ +++

Compound 6 36 12 -4.1 6.68 +++ +++

Compound 7 32 56 -1.3 5.99 +++ +++

Compound 8 49 66 -1.3 5.92 +++ +++

Compound 9 140 19 -7.6 6.45 +++ +++

Compound 10 210 38 6.16 1.1 ++ +++

Compound 11 280 240 1.1 5.36 ++ ++

Compound 12 650 750 -1.6 4.86 ++ ++

Compound 13 810 550 -1.8 5 ++ ++

Compound 14 980 620 -2.2 4.95 ++ ++

Compound 15 1020 560 -2.8 4.99 + ++

Compound 16 1920 5300 5.9 4.01 + +

Compound 17 5840 730 -15 4.87 + ++

Compound 18 8640 1800 -3.9 4.48 + +
aPositive value indicates that the estimate IC50 is higher than the experimental IC50; negative value indicates that the 
estimate IC50 is lower than the experimental IC50.
bFit value indicates how well the features in the pharmacophore map the chemical features in the compound 
Activity scale:  IC50 ≤ 10 nM  (Most active, ++++); 10<  IC50 ≤ 200 nM (Active, +++); 200< IC50 ≤ 1000 nM  (Moderately 
active, ++); > 1000 nM 
(inactive, +)

ore models having correlation values greater than 0.889. 
Out of them, the top four pharmacophore models corre-
lated the activity data with high correlation values that 
were higher than 0.9. These results indicate the capabil-
ity of the pharmacophore model to predict the activity 

of the training set compounds. Hypo 1 showed the high-
est correlation coeffi cient value of 0.9, thus highlighting 
its strong predictive ability (Muthusamy et al., 2015). 
RMSD values calculated for the top fi ve pharmacoph-
ore models were less than 1.5 which supports our fi nd-
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FIGURE 2. The Best HypoGen Pharmacophore 
Model, Hypo 1. (a) Chemical features present in 
Hypo 1 (b) 3D Spatial Arrangement and the Dis-
tance Constraints between the Chemical Features. 
Green color represents HBA, magenta color repre-
sents HBD and cyan color represents HY-AL.

FIGURE 3. Pharmacophore Mapping: Mapping of the most active compounds 
1, IC50 = 0.0032 mapped on the best pharmacophore model; (b) the least 
active compound (compound 18, IC50 = 8640) mapped on the best pharmaco-
phore model (Hypo 1). In the pharmacophore model - green represents HBA, 
magenta represents HBD and cyan represents HY-AL features.

ings (Niu et al., 2014). Hypo 1 was developed with better 
statistical values, such as higher correlation, large cost 
difference, and low RMSD (1.30795). Hypo 1 has pre-
dicted the experimental activity values of training set 
compounds with high correlation. All compounds in the 
training set were categorized into four different groups 
based on their experimental activity (IC50) values: most 
active (IC50 ≤ 10 nM, ++++), active (10 < IC50 ≤ 200 nM, 
+++), moderately active (200 < IC50 ≤ 1000 nM, ++), and 
inactive (IC50 > 1000 nM, +). 

The predictive ability of Hypo 1 on training set com-
pounds is shown in (Table 2). In accordance with the 

Hypo1 activity values, 15 out of 18 compounds in the 
training set were predicted within their experimental 
activity scale whereas compounds 10, 15, and 17 were 
over estimated as active. None of the calculated error 
values representing the ratio between the experimental 
and predicted activity values were more than one order 
of magnitude. All of the three most active compounds in 
the training set were predicted very close to their activ-
ity values indicating the predictive ability of Hypo 1. 
The most active compounds in training set mapped all 
the features of Hypo 1 whereas the other compounds 
missed at least one of the pharmacophoric features. 

The pharmacophore mapping of the most active 
and the least active compounds is shown in (Figure 
3). Among top four hypotheses, Hypo 1 is the best 
model over others which have also shown a high cor-
relation value (0.91) with HBA, HBD and HY-AL fea-
tures (Thangapandian et al., 2011b). The energy values 
of the conformations of the most active compounds in 
the training set used in model generation were lower in 
Hypo 1 but relatively higher in Hypo 2. This analysis 
also supported the reliability of Hypo 1 along with the 
high correlation coeffi cient.

PHARMACOPHORE CROSS VALIDATION 

(a) Fisher Randomization Test

The Fisher randomization test used for testifying and 
validating Hypo 1 indicates that this pharmacophore 
model does not occur due to the random correlation 
(Singh and Singh, 2013). The experimental activities of 
the training set were picked randomly and the resulting 
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training set was used in HypoGen with the parameters 
chosen for the original pharmacophore generation. A set 
of 19 random spread sheets was generated to achieve a 
95% confi dence level that the best pharmacophore Hypo 
1 was not generated by chance (Sakkiah and Lee, 2012) 
shown in (Table 3). None of the randomly generated 
pharmacophore models during Fisher randomization 
test has scored better statistical parameters than Hypo 1. 
Though four random pharmacophores scored a correla-
tion value higher than 0.9 (i. e. than Hypo 1).

(b) Leave – one – out method

Leave – one - out method was used for fi nal validation(Niu 
et al., 2013). This method is used to verify if the correla-
tion between the experimental and predicted activities 
is primarily dependent on one particular molecule in 
the training set, or otherwise. This is done by apply-
ing recursive iteration on the pharmacophore model by 
excluding one molecule in every iteration cycle. The 18 
HypoGen calculations were carried out under conditions 
that were identical to the ones used in the generation of 
original pharmacophore model Hypo 1. 18 new train-
ing sets, each containing 17 molecules, were derived. 
The correlation coeffi cients of newly generated phar-

macophore models were computed. A positive result 
emerges if none of the correlation coeffi cients of newly 
generated pharmacophore models is higher or too lower 
to that of Hypo 1. The fi ndings establish that none of 
the 18 new models generated by this method has any 
signifi cant difference vis – a - vis Hypo 1. This result 
enhances the confi dence level of Hypo 1regarding the 
non – dependence of correlation coeffi cient on any par-
ticular compound in the training set. 

CONCLUSION

The present study is an attempt to generate a quantita-
tive pharmacophore model for neuraminidase enzyme 
by employing a dataset of known inhibitors. A model 
(Hypo 1) was developed based on the training set com-
pounds with high chemical structure diversity and sig-
nifi cant divergence in biological activity values (IC50). 
The best pharmacophore model was selected on the basis 
of various parameters like cost difference, correlation co 
– effi cient, and the validation results. All these valida-
tion procedures have shown and confi rmed the strength 
of the selected model Hypo 1. These validation results 

Table 3. Fisher Randomization test results.

Validation no Total cost Null cost Cost Diff. correlation

Original hypothesis

Hypo 1 94.22 157.052 62.83 0.917666

Randomized 
hypothesis
Trail 1 103.517 157.052 53.535 0.871634

Trail 2 109.558 157.052 47.494 0.854541

Trail 3 108.675 157.052 48.377 0.84838

Trail 4 107.26 157.052 49.792 0.860989

Trail 5 108.599 157.052 48.453 0.856582

Trail 6 132.103 157.052 24.949 0.655598

Trail 7 115.443 157.052 41.609 0.805429

Trail 8 112.835 157.052 44.217 0.804367

Trail 9 122.52 157.052 34.532 0.724558

Trail 10 112.816 157.052 44.236 0.885913

Trail 11 113.451 157.052 43.601 0.801793

Trail 12 115.03 157.052 42.022 0.868995

Trail 13 101.264 157.052 55.788 0.89344

Trail 14 105.574 157.052 51.478 0.919629

Trail 15 115.66 157.052 41.392 0.784862

Trail 16 110.194 157.052 46.858 0.906808

Trail 17 114.316 157.052 42.736 0.779937

Trail 18 127.639 157.052 29.413 0.780038

Trail 19 127.029 157.052 24.95 0.692584
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throw interesting opportunities for further database 
screening to identify the small molecule which can be 
used in neuraminidase inhibitor design and may provide 
leads in the world’s fi ght against Infl uenza A Virus.
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