Sweta, Usha and Sunil
global burden of cryptococcal meningitis among persons liv-
ing with HIV/AIDS. Aids, Vol. 23, No. 4, pp. 525-30.
Pavlasova, G., Borsky, M., Seda, V., Cerna, K., Osickova, J.,
Doubek, M., Mayer, J., Calogero, R., Trbusek, M. ,Pospisilova,
S. (2016) Ibrutinib inhibits CD20 upregulation on CLL B cells
mediated by the CXCR4/SDF-1 axis. Blood, Vol. 128, No. 12,
pp. 1609-13.
Pawlowski, A., Jansson, M., Sköld, M., Rottenberg, M.E. ,Käl-
lenius, G. (2012) Tuberculosis and HIV co-infection. PLoS Pat-
hog, Vol. 8, No. 2, p. e1002464.
Poongavanam, V., Kongsted, J. (2013) Virtual screening models
for prediction of HIV-1 RT associated RNase H inhibition. PloS
one, Vol. 8, No. 9, p. e73478.
Prosperi, M., De Luca, A. (2011) Computational models for pre-
diction of response to antiretroviral therapies. AIDS reviews,
Vol. 14, No. 2, pp. 145-53.
Prosperi, M.C., Altmann, A., Rosen-Zvi, M., Aharoni, E., Bor-
gulya, G., Bazso, F., Sönnerborg, A., Schülter, E., Struck, D.
,Ulivi, G. (2009) Investigation of expert rule bases, logistic
regression, and non-linear machine learning techniques for
predicting response to antiretroviral treatment. Antivir Ther,
Vol. 14, No. 3, pp. 433-42.
Riemenschneider, M., Heider, D. (2016a) Current Approaches in
Computational Drug Resistance Prediction in HIV. Current HIV
research, Vol. 14, No. 4, pp. 307-15.
Riemenschneider, M., Senge, R., Neumann, U., Hüllermeier,
E. ,Heider, D. (2016b) Exploiting HIV-1 protease and reverse
transcriptase cross-resistance information for improved drug
resistance prediction by means of multi-label classi cation.
BioData mining, Vol. 9, No. 1, p. 10.
Saini, V., Marchese, A. ,Majetschak, M. (2010) CXC chemokine
receptor 4 is a cell surface receptor for extracellular ubiquitin.
Journal of Biological Chemistry, Vol. 285, No. 20, pp. 15566-
76.
Samson, M., Labbe, O., Mollereau, C., Vassart, G. ,Parmentier,
M. (1996) Molecular cloning and functional expression of a
new human CC-chemokine receptor gene. Biochemistry, Vol.
35, No. 11, pp. 3362-7.
Sander, O., Sing, T., Sommer, I., Low, A.J., Cheung, P.K., Har-
rigan, P.R., Lengauer, T. ,Domingues, F.S. (2007) Structural
descriptors of gp120 V3 loop for the prediction of HIV-1 core-
ceptor usage. PLOS Comput Biol, Vol. 3, No. 3, p. e58.
Scherzer, R., Estrella, M., Yongmei, L., Deeks, S.G., Grunfeld, C.
,Shlipak, M.G. (2012) Association of tenofovir exposure with
kidney disease risk in HIV infection. AIDS (London, England),
Vol. 26, No. 7, p. 867.
Singh, O., Su, E.C.-Y. (2016) Prediction of HIV-1 protease
cleavage site using a combination of sequence, structural, and
physicochemical features. Bmc Bioinformatics, Vol. 17, No. 17,
p. 279.
Slimani, H., Charnaux, N., Mbemba, E., Saffar, L., Vassy, R.,
Vita, C. ,Gattegno, L. (2003) Interaction of RANTES with syn-
decan-1 and syndecan-4 expressed by human primary mac-
rophages. Biochimica et Biophysica Acta (BBA)-Biomem-
branes, Vol. 1617, No. 1, pp. 80-8.
Srisawat, A., Kijsirikul, B. (2008) Combining classi ers for
HIV-1 drug resistance prediction. Protein and peptide letters,
Vol. 15, No. 5, pp. 435-42.
Struyf, S., Menten, P., Lenaerts, J.P., Put, W., D’Haese, A., De
Clercq, E., Schols, D., Proost, P. ,Van Damme, J. (2001) Diverg-
ing binding capacities of natural LD78 isoforms of mac-
rophage in ammatory protein‐1 to the CC chemokine recep-
tors 1, 3 and 5 affect their anti‐HIV‐1 activity and chemotactic
potencies for neutrophils and eosinophils. European journal of
immunology, Vol. 31, No. 7, pp. 2170-8.
Tebas, P., Stein, D., Tang, W.W., Frank, I., Wang, S.Q., Lee, G.,
Spratt, S.K., Surosky, R.T., Giedlin, M.A. ,Nichol, G. (2014)
Gene editing of CCR5 in autologous CD4 T cells of persons
infected with HIV. New England Journal of Medicine, Vol. 370,
No. 10, pp. 901-10.
Wawer, M.J., Gray, R.H., Sewankambo, N.K., Serwadda, D., Li,
X., Laeyendecker, O., Kiwanuka, N., Kigozi, G., Kiddugavu, M.
,Lutalo, T. (2005) Rates of HIV-1 transmission per coital act, by
stage of HIV-1 infection, in Rakai, Uganda. Journal of Infec-
tious Diseases, Vol. 191, No. 9,
pp. 1403-9.
Wei, Y., Li, J., Chen, Z., Wang, F., Huang, W., Hong, Z. ,Lin, J.
(2015) Multistage virtual screening and identi cation of novel
HIV-1 protease inhibitors by integrating SVM, shape, pharma-
cophore and docking methods. European journal of medicinal
chemistry, Vol. 101, pp. 409-18.
Wiskerchen, M. ,Muesing, M.A. (1995) Human immunode -
ciency virus type 1 integrase: effects of mutations on viral
ability to integrate, direct viral gene expression from unin-
tegrated viral DNA templates, and sustain viral propaga-
tion in primary cells. Journal of virology, Vol. 69, No. 1,
pp. 376-86.
Xuan, S., Wu, Y., Chen, X., Liu, J. ,Yan, A. (2013) Prediction
of bioactivity of HIV-1 integrase ST inhibitors by multilinear
regression analysis and support vector machine. Bioorganic &
medicinal chemistry letters, Vol. 23, No. 6, pp. 1648-55.
Yan, A., Xuan, S. ,Hu, X. (2012) Classi cation of active and
weakly active ST inhibitors of HIV-1 integrase using a support
vector machine. Combinatorial chemistry & high throughput
screening, Vol. 15, No. 10, pp. 792-805.
Zazzi, M., Cozzi-Lepri, A. ,Prosperi, M.C. (2016) Computer-
Aided Optimization of Combined Anti-Retroviral Therapy for
HIV: New Drugs, New Drug Targets and Drug Resistance. Cur-
rent HIV research, Vol. 14, No. 2, pp. 101-9.
Zazzi, M., Incardona, F., Rosen-Zvi, M., Prosperi, M., Lengauer,
T., Altmann, A., Sonnerborg, A., Lavee, T., Schülter, E. ,Kai-
ser, R. (2012) Predicting response to antiretroviral treatment by
machine learning: the EuResist project. Intervirology, Vol. 55,
No. 2, pp. 123-7.
Zhen, A. ,Kitchen, S. (2013) Stem-cell-based gene therapy for
HIV infection. Viruses, Vol. 6, No. 1, pp. 1-12.
BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS MACHINE LEARNING APPROACHES TO STUDY HIV/AIDS INFECTION 43