Rajasekar S., Vijayalakshmi S. and A. Mohankumar
BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS ANTIBACTERIAL ACTIVITY OF ZRO
2
AGAINST METALLO BETA-LACTAMASE 385
used and it shows prominent anti carcinogenic activity
against test pathogen.
CONCLUSION
The study also highlights that ML incidence is increas-
ing in our region. The metallo beta-lactamase and bio lm
production is the most worrisome resistant mechanisms
observed in P. aeruginosa. Emergence of antimicrobial
resistance by pathogenic bacteria is a major health prob-
lem in recent years. The resistance may spread rapidly
to various species of Gram-negative bacilli; therefore, to
prevent the further spread of ML producers, it is essen-
tial to rapidly detect ML-positive isolates to aid infection
control. Recurrently, tiny nanoparticles, far smaller than
the width of a human hair, might help the body’s own
immune system ght tumors. Moreover, it is reported here
that these novel metallo nanopar ticles (ZrO
2
) comprises
of well-known inhibitory and bactericidal effects against
cancer causing Pseudomonas aeruginosa.
REFERENCES
Ae Mftah, Fatah H Alhassan, Mothanna Sadiq Al-Qubaisi,
Mohamed Ezzat El Zowalaty, Thomas J Webster, Mohammed
Sh-eldin, Abdullah Rasedee, Yun Hin Tau q-Yap, and Shah
Samiur Rashid (2015). Physicochemical properties, cytotoxic-
ity, and antimicrobial activity of sulphated zirconia nanoparti-
cles. Int J Nanomedicine. 10: 765–774.
Afreenish Hassan, Javaid Hasman, Fatima and Maria (2011).
Evaluation of different methods associated of bio lm forma-
tion in the clinical isolates. Braz. J. Infectious disease. 15(4):
305 - 311.
Buscher, KH., W. Cullman, W. Dick, Wendt. S and Opferkuch. W
(2000). Imipenem resistance in P. aeruginosa is due to dimin-
ished expression of the outer membrane proteins. J. Infect. Dis.
156: 681- 685.
Costerton, J.W., P.S. Stewart and Greenberg E.P (1999). Bacte-
rial bio lms: a common cause of persistent infections. Science.
284: 1318–1322.
Costerton, J.W., Z. Lewandowski, D.E. Caldwell, Korber D.R and
Lappin-Scott H.M (1995). Microbial bio lms. Annu Rev Micro-
biol. 49: 711–745.
Govan, J.R and Deretic V (1996). Microbial pathogenesis in
cystic brosis: mucoid Pseudomonas aeruginosa and Burk-
holderia cepacia. Microbiol. Rev. 60: 539 – 74.
Holmes, D and Quigley M (1981). A rapid boiling method for
the preparation of bacterial plasmids. Anal. Biochem. 114:
193-197.
Hua Wang,Denise Wingett,Kevin Feris,Madhusudan R Kon-
gara,Alex Punnoose (2011). Fluorescent particles comprising
nanoscale ZnO layer and exhibiting cell-speci c toxicity. US
Patent. US 7,939,560 B2. 1-8.
Lee, K., Y. Chong, H.B. Shin, Y.A. Kim, Yong D and Yum J.H
(2001). Modi ed Hodge and EDTA-disk synergy tests to screen
metallo-lactamase-producing strains of Pseudomonas and
Acetobacter species. Clin Microbiol Infect. 7: 88–91.
Liu, XZ., I. Zang and Poole K(2000). Interplay between the
MexA MexB OprM multidrug Pseudomonas aeruginosa. J.
Antimicrobiol. Chemother. 45: 433-436.
Mahrukh Khattak, Muhammad Saqib Ishaq, Maimoona Gul, M.
Medrar Hussain, Ghadir Ali, Amir Mohammad, Khalid Javed
and Arshad Parvez (2013). Isolation and identi cation of Pseu-
domonas Aeruginosa from ear samples and its antibiogram
analysis. 6(2).
Mariappan Premanathan, Krishnamoorthy Karthikeyan,
Kadarkaraithangam Jeyasubramanian and Govindasamy
Manivannan (2011). Selective toxicity of ZnO nanoparticles
toward Gram-positive bacteria and cancer cells by apoptosis
through lipid peroxidation Nanomedicine: Nanotechnology,
Biology, and Medicine. 7: 184–192.
Mathur, T., S. Singhal, S. Khan, DJ. Upadhyay, Fatma T and
Rattan A (2006). Detection of bio lm among clinical isolates
of Staphylococci: An evaluation of three different screening
methods. Indian J Med Microbiol. 24(1): 25-9.
Mavroidi, A., A. Tsakris, E. Tzelepi, S. Pournaras, Loukova V
and Tzouvelekis L.S (2000). Carbapenem-hydrolyzing VIM-2
metallo-b-lactamase in Pseudomonas aeruginosa from Greece.
J Antimicrob Chemother. 46: 1041–1042.
Mehul Chaudhari. S., B. Tanuja Javadekar, Govind Ninama and
Neelam Pandya1 Jivraj Damor (2011). A study of metallo-beta-
lactamase producing Pseudomonas aeruginosa in clinical sam-
ples of S.S.G. hospital. National journal of medical research.
1(2): 60-63.
Pollack, M (2000). Pseudomonas aeruginosa. In: Principles and
practice of infectious diseases (eds. G.L. Mandell, J. E. Bennett
and R. Dolin), Churchill Livingstone, Philadelphia, PA, USA,
5th Ed: 2310-2335.
Poole, K (2004). Ef ux mediated multi resistance in Gram
Negative bacteria. Clinical 0Microbiology and Infection. 10
(1): 12–26.
Riggs, M.G and McLachlan A (1986). Biotechnology Tech-
niques. 4: 310 - 313.
Tsakris, A., A.C. Vatopoulous, Tzouvelekis L.S and Legakis N.J
(1992). Diversity of resistant phenotypes and plasmid analysis
in multi resistant 0:12 Ps. aeruginosa. Eur. J. Epidemiol. 8:
865-780.
Xicohtencatl-Cortes, J., V. Monteiro-Neto, Z. Saldana, M.
A. Ledesma, Puente J.L, Girón J.A (2009). The type 4 pili of
enterohemorrhagic Escherichia coli O157:H7 are multipurpose
structures with pathogenic attributes. J Bacteriol. 191:411-421.
Yong, D., K. Lee, J.H. Yum, H.B. Shin, Rossolini G.M and Chong
Y (2002). Imipenem-EDTA disk method for differentiation of
Metallo eta lactamase producing clinical isolates of Pseu-
domonas spp.
and Acinetobacter spp. J Clin Microbiol. 40:
3798-801.