BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS VITIDB: VITILIGO PROTEIN REPOSITORY AND ASSESSMENT PORTAL 17
Anvita Gupta Malhotra et al.
online databases in providing all-inclusive information
about the drugs, targets and target identi cation proc-
ess aimed at further research and drug discovery efforts.
Availability
vitiDBis a free database that can be accessed at http://
vitidb.com
Acknowledgments
The authors thankfully acknowledge the help, support
and guidance provided by Dr. Ajay Pandey, Department
of Mechanical Engineering, MANIT, Bhopal.
References
Anonymous (2015) UniProt: a hub for protein information,
Nucleic Acids Res 43(Database issue), D204-212.
Anonymous (2017) Database Resources of the National Center
for Biotechnology Information, Nucleic Acids Res 45(D1), D12-
D17.
Assenov, Y., F. Ramirez, S. E. Schelhorn, T. Lengauer, M. Albre-
cht (2008), Computing topological parameters of biological
networks, Bioinformatics 24(2), 282-284.
Berman, H. M., J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat,
H. Weissig, I. N. Shindyalov, P. E. Bourne (2000) The Protein
Data Bank, Nucleic Acids Res 28(1), 235-242.
Bulusu, K. C., J. E. Tym, E. A. Coker, A. C. Schierz, B. Al-Lazi-
kani (2014) canSAR: updated cancer research and drug dis-
covery knowledgebase, Nucleic Acids Res 42(Database issue),
D1040- 1047.
Ceol, A., A. ChatrAryamontri, L. Licata, D. Peluso, L. Brig-
anti, L. Perfetto, L. Castagnoli, G. Cesareni (2010) MINT: the
molecular interaction database, 2009 update, Nucleic Acids
Res 38(Database issue), D532-539.
Chatr-Aryamontri, A., B. J. Breitkreutz, R. Oughtred, et al.,
(2015) The BioGRID interaction database: 2015 update, Nucleic
Acids Res 43(Database issue), D470-478.
Chen, W. H., P. Minguez, M. J. Lercher, P. Bork (2012) OGEE: an
online gene essentiality database, Nucleic Acids Res 40(Data-
base issue), D901-906.
Costa, P. R., M. L. Acencio, N. Lemke (2010) A machine learn-
ing approach for genome-wide prediction of morbid and drug-
gable human genes based on systems-level data, BMC Genom-
ics 11 Suppl 5, S9.
Croft, D., A. F. Mundo, R. Haw, M. Milacic, et al., (2014) The
Reactome pathway knowledgebase, Nucleic Acids Res 42(Data-
base issue), D472-477.
Dey-Rao, R., A. A. Sinha (2017) Vitiligo blood transcriptom-
ics provides new insights into disease mechanisms and identi-
es potential novel therapeutic targets, BMC Genomics 18(1),
109.
Du, P., G. Feng, J. Flatow, J. Song, M. Holko, W. A. Kibbe, S.
M. Lin (2009) From disease ontology to disease-ontology lite,
statistical methods to adapt a general-purpose ontology for
the test of gene-ontology associations, Bioinformatics 25(12),
i63-68.
Eppig, J. T., J. A. Blake, C. J. Bult, J. A. Kadin, J. E. Richardson
(2007) The mouse genome database (MGD): new features facili-
tating a model system, Nucleic Acids Res 35(Database issue),
D630-637.
Gao, Z., H. Li, H. Zhang, X. Liu, L. Kang, X. Luo, W. Zhu, K.
Chen, X. Wang, H. Jiang (2008) PDTD: a web-accessible pro-
tein database for drug target identi cation, BMC Bioinformat-
ics 9, 104.
Gashaw, I., P. Ellinghaus, A. Sommer, K. Asadullah (2011)
What makes a good drug target?, Drug Discov Today 16(23-
24), 1037-1043.
Georgi, B., B. F. Voight, M. Bucan (2013) From mouse to
human, evolutionary genomics analysis of human orthologs
of essential genes, PLoS Genet 9(5), e1003484.
Gilson, M. K., T. Liu, M. Baitaluk, G. Nicola, L. Hwang, J.
Chong (2016) BindingDB in 2015: A public database for
medicinal chemistry, computational chemistry and systems
pharmacology, Nucleic Acids Res 44(Database issue), D1045-
1053.
Grif th, M., O. L. Grif th, A. C. Coffman, J. V. Weible, J. F.
McMichael, N. C. Spies, J. Koval, I. Das, M. B. Callaway, J. M.
Eldred, C. A. Miller, J. Subramanian, R. Govindan, R. D. Kumar,
R. Bose, L. Ding, J. R. Walker, D. E. Larson, D. J. Dooling, S.
M. Smith, T. J. Ley, E. R. Mardis, R. K. Wilson (2013) DGIdb
- Mining the druggable genome, Nat Methods 10(12), 1209-
1210.
Guerra, L., E. Dellambra, S. Brescia, D. Raskovic (2010) Vitiligo:
pathogenetic hypotheses and targets for current therapies, Curr
Drug Metab 11(5), 451-467.
Hamosh, A., A. F. Scott, J. S. Amberger, C. A. Bocchini, V.
A. McKusick (2005) Online Mendelian Inheritance in Man
(OMIM): a knowledgebase of human genes and genetic disor-
ders, Nucleic Acids Res 33(Database issue), D514-517.
Holme, P., B. J. Kim, C. N. Yoon, S. K. Han (2002) Attack vul-
nerability of complex networks, Phys Rev E Stat Nonlin Soft
Matter Phys 65(5 Pt 2), 056109.
Hopkins, A. L., C. R. Groom (2002) Thedruggable genome, Nat
Rev Drug Discov 1(9), 727-730.
Jin, Y., G. Andersen, D. Yorgov, T. M. Ferrara, S. Ben, K. M.
Brownson, P. J. Holland, S. A. Birlea, J. Siebert et al., (2016)
Genome-wide association studies of autoimmune vitiligo iden-
tify 23 new risk loci and highlight key pathways and regula-
tory variants, Nat Genet 48(11), 1418-1424.
Kandoi, G., M. L. Acencio, N. Lemke (2015) Prediction of Drug-
gable Proteins Using Machine Learning and Systems Biology,
A Mini-Review, Front Physiol 6.
Kerrien, S., B. Aranda, L. Breuza, A. Bridge, et al., (2012) The
IntAct molecular interaction database in 2012, Nucleic Acids
Res 40(Database issue), D841-846.